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Abstract. The paper studies class theory over the logic HYPE recently introduced by
Hannes Leitgeb. We formulate suitable abstraction principles and show their consistency
by displaying a class of fixed-point (term) models. By adapting a classical result by Brady, we
show their inconsistency with standard extensionality principles, as well as the incompatibility
of our semantics with weak extensionality principles introduced in the literature. We then for-
mulate our version of weak extensionality (appropriate to the behaviour of the conditional in
HYPE) and show its consistency with one of the abstraction principles previously introduced.
We conclude with observations and examples supporting the claim that, although arithmetical
axioms over HYPE are as strong as classical arithmetical axioms, the behaviour of classes
over HYPE is akin to the one displayed by classes in other nonclassical class theories.

1. Introduction

The logic HYPE has been recently put forward by Hannes Leitgeb as a framework to study
several phenomena that appear to be incompatible with classical logic [13]. HYPE has close
relationships with well-known logical systems: Odintsov and Wansing [17] recently showed that
HYPE is equivalent to the logic N∗

i (Heyting-De Morgan logic or modal symmetric propositional
calculus), introduced by Moisil [14] and later explored by Monteiro [15]. HYPE can be seen,
roughly (but see §2 for a precise definition), as the result of extending First-Degree Entailment
(FDE) with an intuitionistic conditional →.1

One application studied by Leitgeb is to semantic paradoxes. Leitgeb provides fixed-point
models based on HYPE which satisfy the T-schema T⌜A⌝ ↔ A where A belongs to a restricted
class of sentences, possibly containing the conditional but only in the context of HYPE-logical
truths. This appears to be an improvement over standard fixed-point models proper of Kripke’s
theory of truth [12], since the equivalence between A and T⌜A⌝ can now be expressed in the
object language.

The expressive power of fixed-point models based on HYPE has impact on the construction
of formal (axiomatic) theories of truth in HYPE. Nonclassical axiomatizations of fixed-point
semantics are known to be deductively weak, if compared to classical alternatives [11]. As
shown in [9], HYPE enables one to overcome such weakness, and reach the same strength of
classical fixed-point theories, notably of the Kripke-Feferman theory [7]. Axiomatizations of
Kripke’s theory of truth are typically formulated over classical arithmetical theories, such as
Peano Arithmetic. Therefore, such theories already assume a nontrivial amount of classical
mathematics. Over this base, truth-theoretic axioms in HYPE are known to yield significant
strength.

To measure the foundational significance of HYPE, it is then natural to ask whether abstrac-
tion principles obtained via fixed-point models for HYPE are sufficient to develop a nontrivial
amount of mathematical objects and concepts and whether they are compatible with suitable
extensionality principles characteristic of sets or classes. It’s clear that, given the intuitionistic
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flavour of HYPE, Curry’s paradox prevents one from considering naïve abstraction principles,
but one can still consider restricted abstraction principles allowing for a non-trivial amount of
self-membership. In the paper we explore several such abstraction and extensionality principles.
The main results of the paper are:

(i) The consistency of abstraction and comprehension principles over HYPE restricted to
a class of formulae Φ whose properties are analogous to the class of sentences appearing
in Leitgeb’s T-schema (Proposition 3.7), and the inconsistency of such principles with
the standard formulation of extensionality (Lemma 3.8).

(ii) The incompatibilty of the so-called weak extensionality principle with fixed-point se-
mantics for abstraction in HYPE.2 Specifically, we show that no fixed-point model of
Φ-abstraction nor models of further natural restrictions of it are models of weak exten-
sionality (Proposition 3.9).

(iii) The formulation of a suitable extensionality principle for HYPE (a weak extension-
ality principle formulated with contraposable biconditionals) and its consistency with
abstraction restricted to a class of formulae Ψ ⊆ Φ obtained by suitably regimenting the
behaviour of identity (Theorem 3.11). This result requires some non-trivial adaptation
of a classic proof by Brady [3, 4, 5].

Although, as shown in [9], arithmetical axioms over HYPE display the same proof-theoretic
strength as classical arithmetic, the development of classical set/class theory in HYPE is severely
impeded. As we will exemplify in §4, the abstraction and extensionality principles studied in the
paper are already at odds with standard definitions of singletons and power sets. By contrast,
class theory in HYPE displays some interesting features if compared with other nonclassical
theories; for instance, as shown in §4, it delivers stable notions of empty and universal sets, and
a well-behaved notion of subset.

2. HYPE

We recall the basics of the logic HYPE. We consider the language L→
∈ , with logical symbols

¬,∨,→,∀,=, a propositional constant ⊥, a set of variables Var and whose signature contains the
binary membership predicate ∈. L→

∈ features an abstraction operator {· : −}, where · stands for
a variable and − stands for a formula of L→

∈ in which the variable indicated by · may be free.
Terms and formulae of L→

∈ , with their free variables FV(·) are inductively defined in a standard
fashion. The clause for abstraction terms is:

– If x, x1, . . . , xn ∈ Var and φ is a formula of L→
∈ , then {x : φ(x, x1, . . . , xn)} is a term of

L→
∈ with free variables FV({x : φ(x, x1, . . . , xn)}) = FV(φ) \ {x};

The symbols ∧,∃,↔ are defined as usual, ⊤ is defined as ¬⊥. Intuitionistic negation ∼ A is
defined as A → ⊥ and the material conditional A ⊃ B as ¬A ∨ B. Material equivalence A ≡ B
is defined as (A ⊃ B) ∧ (B ⊃ A). We define L∈ as the →-free version of L→

∈ .
Proof-thoretically, HYPE can be described via the multi-conclusion sequent calculus G1hcd

introduced by Fischer et al. [9], which is recalled below. This calculus combines standard rules
of FDE with rules for a multi-conclusion calculus for intuitionistic implication. Sequents are
expressions of form Γ ⇒ ∆, where Γ,∆ are multisets of L→

∈ -formulae. For a multiset Γ =
γ1, . . . , γn, we define ¬Γ = ¬γ1, . . . ,¬γn. A formula A is derivable if the sequent ⇒ A is provable
in G1hcd.

(ID) A ⇒ A (L⊥) ⊥ ⇒

2Weak extensionality is a set-theoretic rendering of the indiscernibility of identicals: if x and y are coextensive,
then they are members of the same sets.
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Γ ⇒ ∆(LW)
A,Γ ⇒ ∆

Γ ⇒ ∆(RW) Γ ⇒ ∆, A

A,A,Γ ⇒ ∆(LC)
A,Γ ⇒ ∆

Γ ⇒ ∆, A,A(RC) Γ ⇒ ∆, A

A,Γ ⇒ ∆ B,Γ ⇒ ∆(L∨)
A ∨B,Γ ⇒ ∆

Γ ⇒ A,B,∆(R∨) Γ ⇒ A ∨B,∆

Γ ⇒ ∆, A B,Γ ⇒ ∆(L →)
A → B,Γ ⇒ ∆

Γ, A ⇒ B(R →) Γ ⇒ A → B,∆

Γ ⇒ ¬∆(ConCp) ∆ ⇒ ¬Γ
¬Γ ⇒ ∆(ClCp)
¬∆ ⇒ Γ

A(t),Γ ⇒ ∆
(L∀)

∀xA,Γ ⇒ ∆

Γ ⇒ ∆, A(y)
(R∀) Γ ⇒ ∆,∀xA
y not free in Γ,∆,∀xA.

Γ ⇒ ∆, A A,Γ ⇒ ∆
Cut Γ ⇒ ∆

Identity behaves classically.
(Ref) ⇒ t = t

(Rep) s = t, A(s) ⇒ A(t)
The extension of G1hcd with Ref and Rep is called G1h=

cd.
A semantics for HYPE can be given in a Routley-style version introduced by Speranski [22].

An involutive Routley frame is a triple F = ⟨W,≤, ∗⟩ such that:
– W is a non-empty set of states;
– ≤ is a pre-ordering on W ;
– ∗ : W −→ W is an antimonotone, involutive function on W , that is, for all w, v ∈ W , if
v ≤ w then w∗ ≤ v∗ and w∗∗ = w.

Let M = ⟨F, D,X, I⟩ be a constant domain HYPE-model for L→
∈ iff:

– F is an involutive Routley frame.
– D is a constant domain.
– X : W −→ P(D2) is a valuation function interpreting ∈ at each state.
– I : Term −→ D is an interpretation function giving the semantic values of terms of L→

∈
over D. The semantic value of terms I(t)[⃗a] is given as follows, where a⃗ is a tuple of
elements of D:

I(vi)[⃗a] = ai,

I({x : φ(x, z1, . . . , zk)})[⃗a] = {x : φ(x, a1, . . . , ak)}.
– If u, v ∈ W and u ≤ v, then X(u) ⊆ X(v).

Here and in the following we will let a name in L→
∈ the element a of the domain D.

Truth in a HYPE model for L→
∈ can now be defined. Let M be a constant domain HYPE-

model for L→
∈ . For every w ∈ W , we define M, w ⊩ φ inductively as follows:

(i) M, w ⊩ (t1 ∈ t2)[⃗a] iff (I(t1)[⃗a], I(t2)[⃗a]) ∈ X(w);
(ii) M, w ⊩ (t1 = t2)[⃗a] iff I(t1)[⃗a] = I(t2)[⃗a];
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(iii) M, w ⊩ φ ∧ ψ iff M, w ⊩ φ and M, w ⊩ ψ;
(iv) M, w ⊩ φ ∨ ψ iff M, w ⊩ φ or M, w ⊩ ψ;
(v) M, w ⊩ ¬φ iff M, w∗ ⊮ φ;
(vi) M, w ⊩ φ → ψ iff for all w′ ∈ W such that w ≤ w′, if M, w′ ⊩ φ then M, w′ ⊩ ψ;
(vii) M, w ⊩ ∀xφ iff, for all a ∈ D, M, w ⊩ φ(a);
(viii) M, w ⊮ ⊥.

We can now define logical consequence and validity. Let Γ,∆ be sets of sentences. Then:
– M, w ⊩ Γ ⇒ ∆ iff, if M, w ⊩ γ for all γ ∈ Γ, then M, w ⊩ δ for some δ ∈ ∆;
– Γ ⊩ ∆ iff, for all M, w: M, w ⊩ Γ ⇒ ∆.

Speranski [22, Theorem 7.8] establishes a strong completeness result for HYPE formulated in a
Hilbert-style calculus QN◦ with respect to the class of involutive Routley frames. As shown by
Fischer et al. [9, Lemma 2], G1hcd ⊢ Γ ⇒ ∆ iff QN◦ ⊢

∧
Γ →

∨
∆, so Γ ⊩ ∆ iff there is a finite

∆0 ⊆ ∆ such that Γ ⊢QN◦ ∆0. Therefore G1hcd is also complete with respect to the class of
involutive Routley frames.

3. Abstraction and Extensionality in HYPE

The extensions of G1h=
cd with an unrestricted abstraction principle

⇒ ∀x(x ∈ {u : φ(u)} ↔ φ(x)), with φ in L→
∈

or with the unrestricted comprehension principle
⇒ ∃y∀x(x ∈ y ↔ φ(x)), with φ in L→

∈

are inconsistent due to Curry’s paradox. Therefore, one needs suitable restrictions.

Definition 3.1. Let X be a collection of formulae of L→
∈ . X-abstraction is the schema:

(X-Abs) ⇒ ∀x(x ∈ {u : φ(u)} ↔ φ(x)), with φ in X.

We first study a theory based on an abstraction axiom schema restricted to a set of formulae
Φ, which roughly corresponds to the restriction of the T-schema operated by Leitgeb in [13,
Theorem 42].

Definition 3.2. Define the set Φ of formulae of L→
∈ as follows:

– If φ is a formula of L∈, then φ is in Φ.
– If φ is a HYPE-logical truth, then φ is in Φ.
– If φ is of the form ψ → χ, where ψ does not contain ∈, and χ does not contain →, then
φ is in Φ.

– The set Φ is closed under ∧,∨,¬,∃,∀.

Remark. The clause for ψ → χ allows for ‘mentioned’ occurrences of ∈ to appear in ψ, that
is to appear inside abstraction terms in ψ; for instance, this is the case in identity statements
involving abstraction terms.

The formulae in the set Φ can be thought of as “stable” formulae, that is, formulae whose
truth-value at a state is invariant under potential changes to the state-space structure. For
instance, HYPE-logical truths clearly satisfy this property since they are true at every state
of any frame. Moreover, every state s in a HYPE model has a star state s∗, and since the
definition of s∗ does not depend on the structure of the frame, but only on s, negated formulae
are also stable. On the other hand, formulae whose main connective is the conditional which are
not logical truths are non-stable because they are evaluated depending on the partial ordering
of states in the model under consideration, hence their value changes if we modify the frame
structure.
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Definition 3.3 (HBSTΦ). The theory HBSTΦ is obtained by extending G1h=
cd in L→

∈ with
the Φ-abstraction schema
(Φ-Abs) ⇒ ∀x(x ∈ {u : φ(u)} ↔ φ(x)), with φ in Φ.

A comprehension axiom schema can easily be derived from Φ-Abs.
(Φ-Com) ⇒ ∃y∀x(x ∈ y ↔ φ(x)), with φ in Φ.

The compatibility of extensionality axioms with abstraction schemata—a defining feature of
set theories as opposed to property theories in HYPE—will be thoroughly investigated in section
3.2. To this end, we introduce a weakening of the abstraction schema to a set of formulae Ψ ⊆ Φ,
which restricts the formulae containing identity allowed in instances of abstraction.3

Definition 3.4. Define the set Ψ of formulae of L→
∈ as follows:

– If φ is of the form x ∈ y, then φ is in Ψ.
– If φ is a HYPE-logical truth or a propositional constant, then φ is in Ψ.
– If φ is of the form ψ → χ, where ψ, χ are in Ψ, ψ does not contain ∈, and χ does not

contain →, then φ is in Ψ.
– The set Ψ is closed under ∧,∨,¬,∃,∀.

Remark. Unlike what happens in the clause for ψ → χ in Definition 3.2, here the restriction
to the atomic clauses – specifically, the absence of identity statements – in the definition of Ψ
effectively rules out even mentioned occurrences of ∈ in abstraction terms in ψ.

Definition 3.5 (HBSTΨ). The theory HBSTΨ is obtained by extending G1h=
cd in L→

∈ with
the Ψ-abstraction schema
(Ψ-Abs) ⇒ ∀x(x ∈ {u : φ(u)} ↔ φ(x)), with φ in Ψ.

Because of the limitations imposed on identity in instances of abstraction, Ψ-Abs (unlike
Φ-Abs) is compatible with some extensionality principles. In particular, we consider three ex-
tensionality axioms. The first one, which we will label strong extensionality—corresponding to
the standard formulation of extensionality in classical set theory—is the following:
(ExtS) ⇒ ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → x = y).
Next, we introduce a so called axiom of weak extensionality, whose consequent is inspired by a
notion of identity as indiscernibility:4

(ExtW) ⇒ ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → ∀w(x ∈ w ↔ y ∈ w)).
As we shall see shortly, ExtW is not a suitable extensionality principle for HYPE. Instead, we
will show that the right version of weak extensionality is a modification of it obtained by guaran-
teeing that the antecedent and the consequent of the axiom are formulated with contraposable
biconditionals. We introduce the abbreviation φ ⇄ ψ standing for (φ ↔ ψ) ∧ (¬φ ↔ ¬ψ), to
formulate the following axiom:
(ExtC) ⇒ ∀x∀y(∀u(u ∈ x⇄ u ∈ y)) → ∀w(x ∈ w ⇄ y ∈ w)).5

We will show in particular that:

3Without the restriction, the “natural” model for abstraction cannot be extended to suitable extensionality
principles. Details are provided in Section 3.2; see in particular Observation 3.1.

4In the context of nonclassical class theory, weak extensionality has received much attention: see [3, 8].
5Note that Brady’s constructions for the consistency of abstraction and weak extensionality both in partial

and paraconsistent settings [4, 5] employ logics with contrapositive conditionals. Field et al. [8] generalise these
constructions to settings with primitive conditionals which do not contrapose, like HYPE’s →.
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(i) ExtS is inconsistent with HBSTΦ (Lemma 3.8).
(ii) None of the natural, fixed-point models for HBSTΨ we will construct in section 3.1

validates ExtW (Proposition 3.9). As an immediate consequence of this, none of the
natural fixed-point models for HBSTΦ validates ExtW, and none of the natural fixed-
point models for HBSTΨ validates ExtS. The question whether ExtS is inconsistent
with HBSTΨ is still open (cf. Remark after Proposition 3.9 and concluding section).

(iii) ExtC is consistent with HBSTΨ, and in fact it has a natural model (Theorem 3.11).
On the other hand, none of the fixed-point models for HBSTΦ constructed in section
3.1 validates ExtC (Observation 3.1).

3.1. A term model for HBSTΦ. We construct a constant domain HYPE model for L→
∈ ,

adapting to the present setting of HYPE a construction by Brady [3, 4], which will turn out to
be a model for HBSTΦ (and, consequently, for HBSTΨ). The domain of our model will be the
set of constant abstraction terms of L→

∈ . The membership predicate is interpreted by adapting
the strategy used by Leitgeb in [13, Theorem 42]. Starting with a HYPE model assigning
arbitrary pairs of constant terms to membership, we carve out a lattice of fixed points via a
suitable monotone operator on states. The HYPE model with this lattice as its state space
will then be our intended model for Φ-abstraction (and Ψ-abstraction). Later, we show that
a submodel of our model for Ψ-abstraction also satisfies ExtC, by our adaptation of Brady’s
results.

The domain of the model is the set of constant abstraction terms CT := {{x : φ} | FV(φ) ⊆ {x}}.
Take a countable set of points W, which will be the set of states in our frame. A valuation F on
W can be seen as a pair ⟨F+, F−⟩, with F± : W −→ P(CT2), where F+ and F− denote functions
that assign to elements of W an extension and an antiextension of ∈, respectively.

We will be interested in the specific valuation F, which distributes sets of pairs over elements
of W without constraints, in such a way that all possible combinations of pairs of elements of CT
are assigned to some element of W, that is:⋃

s∈W
F+(s) = P(CT2),

⋃
s∈W

F−(s) = P(CT2).

The valuation F can be used to induce an involutive Routley frame on W:
– W is a nonempty set;
– Let ≤ be the following ordering on elements of W based on F: if v, w ∈ W, v ≤ w iff

F+(v) ⊆ F+(w) and F−(v) ⊆ F−(w) (henceforth abbreviated as F(v) ⊆ F(w));
– Given F, we can define the star function ∗ : W −→ W as follows:

F+(w∗) := {(a, b)|(a, b) /∈ F−(w)}, F−(w∗) := {(a, b)|(a, b) /∈ F+(w)}.
Note that w∗∗ = w and that for all x, y ∈ W, if x ≤ y then y∗ ≤ x∗.

Let F = ⟨W,≤, ∗⟩ be the frame induced on W by F. The model M = ⟨F, CT, F, I⟩ is then specified
by F and an interpretation function I which gives the semantic value of abstraction terms. We
first define the semantic value of terms I(t)[⃗a], where a⃗ is a tuple of elements of CT:

I(vi)[⃗a] := ai,

I({x : φ(x, z1, . . . , zk)})[⃗a] := {x : φ(x, a1, . . . , ak)}.
As an obvious consequence, for any a⃗, I(t)[⃗a] = t for t ∈ CT. The definition of truth in a HYPE-
model above can be adapted to the present setting to obtain the relation M ⊩ φ[⃗a], whose key
clauses are now:

M, w ⊩ (s ∈ t) [⃗a] iff (I(s)[⃗a], I(t)[⃗a]) ∈ F+(w),
M, w ⊩ (s /∈ t) [⃗a] iff (I(s)[⃗a], I(t)[⃗a]) ∈ F−(w).
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We can now define a jump operator J : P(P(CT2))2 → P(P(CT2))2, with J = ⟨J +,J −⟩ such
that:

J +(F(w)) := {(a, {u : φ(u)}) | M, w ⊩ φ [a]},
J −(F(w)) := {(a, {u : φ(u)}) | M, w ⊩ ¬φ [a]}.

The jump operator selects, within F, the states in which the interpretation of ∈ corresponds to
satisfiability at the relevant states. As a consequence, one has that

M, w ⊩ φ(a) iff M, w′ ⊩ a ∈ {u : φ(u)}(1)
M, w ⊩ ¬φ(a) iff M, w′ ⊩ a /∈ {u : φ(u)}(2)

where w′ is such that F(w′) = J (F(w)). It’s worth noting that if (a, {u : ¬φ}) ∈ J +(F(w)), then
(a, {u : φ}) ∈ J −(F(w)).

Moreover, the jump is monotone:

(3) if v ≤ w then v′ ≤ w′, where F(v′) = J (F(v)), F(w′) = J (F(w)).

To show (3), note that, if v ≤ w, then for all φ ∈ L→
∈ , if M, v ⊩ φ then M, w ⊩ φ, and if

M, v ⊩ ¬φ then M, w ⊩ ¬φ.
⟨W,≤⟩, so defined, is a complete lattice: given any V ⊆ W, we can find its infimum and

supremum by taking the intersection and union of the extension and antiextension of membership
for the states in V .6 By the Knaster-Tarski theorem [23]:

Lemma 3.6. The operator J will have a set FIX of fixed points in W, such that, if w ∈ FIX,
F+(w) = J +(F(w)) and F−(w) = J −(F(w)). Moreover, ⟨FIX,≤⟩ is a complete lattice.

We let sup(FIX) = MAX and inf(FIX) = MIN. We note in particular that, by construction, if
w ∈ FIX, for all φ ∈ L→

∈ ,

M, w ⊩ a ∈ {u : φ(u)} iff M, w ⊩ φ(a)(4)
M, w ⊩ a /∈ {u : φ(u)} iff M, w ⊩ ¬φ(a)(5)

(4) and (5) amount to metatheoretic versions of naïve abstraction, and they hold at fixed-point
states in the model M.7

In order to obtain the satisfaction of some object-linguistic abstraction biconditional, however,
we need to define a new model, M′, whose state space is restricted to the set of fixed points of
J only. However, since the lattice ordering changes when restricting the state space, paradox
will force the loss of full naïveté – for instance, the Curry set will immediately generate paradox
with full naïveté when ≤ is restricted to fixed-point states. In fact, the model M′ will satisfy the
abstraction axiom at most for formulae in Φ.

More precisely, let F′ = F ↾ FIX. We then define a new structure

M′ = ⟨⟨FIX,≤′, ∗′⟩, CT, F′, I⟩

6This follows from the fact that ⟨P(P(CT2))2,⊆⟩ is a complete lattice.
7It may be instructive to see how (4) and (5) do not generate problems for typically paradoxical sets. The

evaluation of conditionals at M is relative to ordering of states involving both fixed-point and non-fixed-point
states. This ensures that naïve abstraction is satisfied at fixed-point states without entailing the satisfaction of
paradoxical sets. For example, the Curry set χ := {u : u ∈ u → ⊥}—named after the truth-theoretic “Curry
sentence” χ := T⌜χ⌝ → ⊥—satisfies naïve abstraction in M without behaving paradoxically. Let w ∈ W be
the top state in M, i.e. such that that (∀v ∈ W)(v ≤ w). Then, by the definition of F, (χ, χ) ∈ F+(w), and so
M, w ⊮ χ ∈ χ → ⊥. Since HYPE models are hereditary, for all states v ∈ W, M, v ⊮ χ ∈ χ → ⊥, and, by the
semantic clause for negation, at the bottom state w∗ in M, we have that M, w∗ ⊩ ¬(χ ∈ χ → ⊥).
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such that ≤′=≤↾ FIX and ∗′ = ∗ ↾ FIX. Note also that ∗′ is indeed a Routley star in FIX, because
if w ∈ FIX then w∗′ ∈ FIX. It can easily be observed that M′ is a constant domain HYPE
model for L→

∈ .
Next, we check that the fixed-point property (4)-(5) satisfied by the fixed-point states relative

to the ordering ≤ is satisfied by the new model M′ for the restricted class of formulae Φ (see
Definition 3.2).

Proposition 3.7. If φ ∈ Φ, then for all w ∈ FIX, M′, w ⊩ a ∈ {u : φ} iff M′, w ⊩ φ(a), and
M′, w ⊩ a /∈ {u : φ} iff M′, w ⊩ ¬φ(a).

Proof. To prove the claim, it is sufficient to show that, for formulae φ ∈ Φ, for all s ∈ FIX,
M, s ⊩ φ(a) iff M′, s ⊩ φ(a). If φ is a formula of L∈, by the construction of F′, M, s ⊩ φ iff
M′, s ⊩ φ; it’s worth noting that the key fact underlying the case of negated formulae is that
star states do not change when moving from M to M′.

If φ is a theorem of HYPE, φ will be satisfied by all states in every HYPE-model. Hence,
by construction, M, w ⊩ φ for all w ∈ FIX. Since ⟨FIX,≤′, ∗′⟩ is an involutive Routley frame and
HYPE has been shown to be complete with respect to the class of involutive Routley frames,
M′ is a model of HYPE, so M′, w ⊩ φ for all w ∈ FIX.

If φ is of the form ψ → χ, where ψ does not contain ∈ and χ ∈ L∈: M, w ⊩ ψ → χ iff for
all w′ ≥ w, M, w′ ⊮ ψ or M, w′ ⊩ χ. Since sentences not containing ∈ contain =, propositional
constants, and logical connectives only, and the interpretation of = is constant across all states
both in M and in M′, M, w ⊩ ψ iff M′, v ⊩ ψ, for all w ∈ W and all v ∈ FIX. Similarly, for
χ ∈ L∈, for all w ∈ FIX, M, w ⊩ χ iff M′, w ⊩ χ by what was established above.

Since, for all w ∈ FIX, M, w ⊩ ψ iff M′, w ⊩ ψ and M, w ⊩ χ iff M′, w ⊩ χ, it follows that
for all w′ ≥ w, M, w′ ⊮ ψ or M, w′ ⊮ χ iff M′, w′ ⊮ ψ or M′, w′ ⊩ χ. Then, M, w ⊩ ψ → χ iff
M′, w ⊩ ψ → χ.

Since the connectives ∧,∨,∀,∃ are evaluated locally, i.e. relative to specific states, closing a
formula of Φ under these connectives will satisfy the lemma. Closure under negation follows by
the fact that, if w ∈ FIX, then also w∗ ∈ FIX.

□

It immediately follows by the previous proposition that the following schema

⇒ ∀x(x ∈ {u : φ(u)} ↔ φ(x)) with φ in Φ

holds in M′. Since Ψ ⊆ Φ, Ψ-Abs also holds in M′. An obvious existential quantification gives
us Φ-Com and comprehension for formulae in Ψ.

3.2. Extensionality. Since we are interested in sets in HYPE, we now study notions of exten-
sionality compatible (or incompatible) with Φ-Abs and Ψ-Abs. We have already introduced the
following extensionality principles:

⇒ ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → x = y)(ExtS)
⇒ ∀x∀y(∀u(u ∈ x ↔ u ∈ y) → ∀w(x ∈ w ↔ y ∈ w))(ExtW)
⇒ ∀x∀y(∀u(u ∈ x⇄ u ∈ y) → ∀w(x ∈ w ⇄ y ∈ w))(ExtC)

Notice that (ExtC) implies the principle

(ExtC’) ∀x∀y(∀u(u ∈ x⇄ u ∈ y) → ∀w(x ∈ w ↔ y ∈ w))

We will now show that ExtS is inconsistent with Φ-Abs, and that natural models of HBSTΨ
do not validate ExtW. Then, we will show that ExtC is consistent with Ψ-Abs—hence the
theory HBSTΨ +ExtC is consistent. The consistency of (ExtC’) with HBSTΨ readily follows.
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3.2.1. Strong and weak extensionality. Gilmore [10] showed that in a language with a primitive
identity predicate like L→

∈ , where identity satisfies Ref and Rep and the identity predicate can
appear in abstraction terms, the axiom of strong extensionality ExtS is inconsistent, that is,
the empty sequent ⇒ is derivable from it. Gilmore’s proof can be reproduced in HBSTΦ.

Lemma 3.8. ExtS is inconsistent with Φ-Abs in HYPE.

Proof. We check that Gilmore’s proof [10, Theorem 2] can in fact be carried out in HBSTΦ. In
the proof we employ the following abbreviations:8

y ∩ z := {x : x ∈ y ∧ x ∈ z}
∅ := {u : u ̸= u}
τ := {u : u ∈ u}

A(s) := {x : (x = τ ∧ s ∈ x)} with x not free in s

T := {u : (A(u) ∩ ∅) = A(u)}

We show that the sequents ⇒ ∀u(u ∈ A(T ) ∩ ∅) ↔ u ∈ A(T )) and (A(T ) ∩ ∅) = A(T ) ⇒ are
derivable in HBSTΦ. These facts, together with the sequent

∀u(u ∈ (A(T ) ∩ ∅) ↔ u ∈ A(T )) ⇒ (A(T ) ∩ ∅) = A(T ),
easily derivable from ExtS, yield the empty sequent via cut.

We first show that the assumption that (A(T ) ∩ ∅) = A(T ) is “explosive”, as it entails the
empty set of formulae. In the following, where several steps in the derivation are immediate
applications of the rules of G1h=

cd, we compress them via a double line. We keep explicit the
steps in which abstraction is employed:

(A(T ) ∩ ∅) = A(T ) ⇒ (A(T ) ∩ ∅) = A(T )
(A(T ) ∩ ∅) = A(T ) ⇒ T ∈ T

(A(T ) ∩ ∅) = A(T ) ⇒ T ∈ τ

(A(T ) ∩ ∅) = A(T ) ⇒ τ = τ ∧ T ∈ τ

(A(T ) ∩ ∅) = A(T ) ⇒ τ ∈ A(T )
(A(T ) ∩ ∅) = A(T ) ⇒ τ ∈ (A(T ) ∩ ∅)

(A(T ) ∩ ∅) = A(T ) ⇒ τ ∈ ∅
(A(T ) ∩ ∅) = A(T ) ⇒ τ ̸= τ τ ̸= τ ⇒

(A(T ) ∩ ∅) = A(T ) ⇒

Now we show that (A(T ) ∩ ∅) and A(T ) are extensionally equivalent.

u ∈ A(T ) ⇒ u ∈ A(T )
u ∈ A(T ) ⇒ u = τ ∧ T ∈ u

u ∈ A(T ) ⇒ T ∈ τ

u ∈ A(T ) ⇒ T ∈ T

u ∈ A(T ) ⇒ (A(T ) ∩ ∅) = A(T )
u ∈ A(T ) ⇒ u ∈ (A(T ) ∩ ∅)

⇒ u ∈ A(T ) → u ∈ (A(T ) ∩ ∅)

From the proof above, to conclude ⇒ ∀u(u ∈ (A(T ) ∩ ∅) ↔ u ∈ A(T )) it suffices to notice that
from u ∈ A(T ) ⇒ u ∈ A(T ) one can easily derive u ∈ (A(T ) ∩ ∅) ⇒ u ∈ A(T ). □

8In the proof and in the remainder of the paper we employ a ̸= b as an abbreviation for ¬(a = b).
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Weak extensionality, to which we now turn, displays a more interesting status in HYPE.
We first state some negative results concerning (ExtW). Unlike what happens in the case of
standard paracomplete and paraconsistent (and inconsistent) settings—see [3, 4, 5]—(ExtW) is
not compatible with our HYPE models for abstraction.

Proposition 3.9. No model of HBSTΨ based on fixed points of J is a model of (ExtW).

Proof. We can find a counterexample to the axiom. Define the following:

τ := {x : x ∈ x}
b := {x : ⊤}
a := {x : ⊤ ∧ τ ∈ τ}
w := {x : ∀y(y ∈ x)}
w′ := {x : x /∈ w}

In a model M of HBSTΨ, let s be a state such that τ ∈ τ is a glut at s, that is M, s ⊩ τ ∈ τ
and M, s ⊩ τ /∈ τ . Then, M, s∗ ⊮ τ ∈ τ and M, s∗ ⊮ τ /∈ τ .

Hence, M, s ⊩ ∀u(u ∈ a ↔ u ∈ b), while M, s∗ ⊮ ∀u(u ∈ a ↔ u ∈ b), so M, s ⊩ ¬∀u(u ∈ a ↔
u ∈ b).

Since M, s ⊩ ⊤, M, s ⊩ ∀y(y ∈ b), and M, s ⊩ ∀y(y ∈ a). Hence, M, s ⊩ a ∈ w and
M, s ⊩ b ∈ w.

However, we know that M, s∗ ⊮ ⊤ ∧ τ ∈ τ , while, obviously, M, s∗ ⊩ ⊤. Hence, M, s∗ ⊩
∀y(y ∈ b), while M, s∗ ⊮ ∀y(y ∈ a). Hence, M, s∗ ⊩ b ∈ w, M, s∗ ⊮ a ∈ w, so M, s ⊩ a /∈ w,
M, s ⊮ b /∈ w by the clause for negation in HYPE.

Hence, M, s ⊩ a ∈ w′,M, s ⊩ a /∈ w′, while M, s ⊮ b ∈ w′,M, s ⊩ b /∈ w′. Hence, M, s ⊮
∀v(a ∈ v ↔ b ∈ v), while M, s ⊩ ∀u(u ∈ a ↔ u ∈ b). □

The above counterexample immediately entails that no model of HBSTΦ based on fixed
points of J is a model of (ExtW). Furthermore, it also implies that no model of HBSTΨ based
on fixed points of J is a model of (ExtS).

Remark. The result of proposition 3.9 relies on the fact that, in a model of HBSTΨ, there are
states s0, s1 with s∗

0 = s1, such that a glut in s0 is a gap in s1, or viceversa. So, we conjecture
that the proof above can be extended to show that no model of HBSTΨ (and, consequently, no
model of HBSTΦ) can satisfy (ExtW). Given the completeness of the logic, this would then
amount to a proof of the inconsistency of (ExtW) with HBSTΨ.

The previous result exploits the behaviour of the HYPE-conditional fixed by an HBSTΨ-
model: it can be true at one state even if, say, the antecedent is a glut and the consequent is
classically true. It then seems that the appropriate formulation of extensional equivalence in
the context of HYPE should amount to coincidence of both extension and antiextension, which
is what (ExtC) delivers, since it is formulated with contrapositive biconditionals. It turns out
that (ExtC) is indeed consistent with HBSTΨ. However, we also show that no term model of
HBSTΦ is a model of (ExtC).

3.2.2. The consistency of ExtC with HBSTΨ. To show the consistency of (ExtC), we consider
a “minimal” model of HBSTΨ, obtained by restricting our attention to the least and greatest
states in M′. Indeed, we can show that there are non-minimal models of HBSTΨ which do not
satisfy (ExtC).

Proposition 3.10. We can find non-minimal models of HBSTΨ which do not satisfy (ExtC).
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Proof. Let M be a model of HBSTΨ with a state s exhibiting two different “truth-teller” sets
τ := {x : x ∈ x}9 and τ ′ := {x : x ∈ x ∧ x ∈ x}, such that (τ ′, τ ′) ∈ F+(s), (τ ′, τ ′) /∈ F−(s) and
(τ, τ) ∈ F−(s), (τ, τ) /∈ F+(s). Then, M, s ⊩ τ ′ ∈ τ , since (τ ′, τ ′) ∈ F+(s), and M, s ⊩ τ /∈ τ ′,
since (τ, τ) ∈ F−(s).

Then, M, s ⊩ ∀w(w ∈ τ ⇄ w ∈ τ ′) but M, s ⊮ ∀v(τ ∈ v ⇄ τ ′ ∈ v), since M, s ⊩ τ ′ ∈ τ but
M, s ⊮ τ ∈ τ . □

The minimal HYPE-model (or two-state HYPE model) Mmin for Ψ-Abs is the restriction of
the model M′ presented in section 3.1 to the frame consisting of its minimal and maximal states.
More precisely, Mmin = ⟨F, CT, F, I⟩, F = ⟨W,≤, ∗⟩, W = {sl, sg}, F(sl) = MIN, F(sg) = MAX,
where MIN and MAX are, respectively, the minimal and the maximal fixed points of the operator
J defined in section 3.1. We can easily see that sl = s∗

g.
To show the consistency of (ExtC) over minimal models of HBSTΨ, we largely follow Field

et al.’s [8] rewriting of Brady’s constructions for partial and paraconsistent logics [3, 4, 5]. We
adapt Field et al.’s proof to the HYPE setting, using dualities between the minimal and the
maximal fixed point to establish the consistency of the axiom over our two-state model Mmin.

It will be useful in what follows to introduce truth values. A sentence φ is said to have truth
value 1 at state s in a HBSTΨ-model M, in symbols |φ|M,s = 1, iff it is determinately true at s,
so iff M, s ⊩ φ and it is not the case that M, s ⊩ ¬φ. Similarly, |φ|M,s = 0 iff φ is determinately
false at s, that is, iff M, s ⊩ ¬φ and it is not the case that M, s ⊩ φ. A sentence φ is a gap at s,
indicated by |φ|M,s = n, iff M, s ⊮ φ and M, s ⊮ ¬φ, and it is a glut at s, indicated by |φ|M,s = b
iff M, s ⊩ φ and M, s ⊩ ¬φ. Note that |φ|M,s = n iff |φ|M,s∗ = b, and if |φ|M,s ∈ {0, 1} then
|φ|M,s∗ = |φ|M,s. In the following we will omit specification of the model in case it is clear from
the context and simply write |φ|s for the truth value of the sentence φ at state s.

Theorem 3.11. A two-state model of HBSTΨ satisfies ExtC, that is, for s ∈ {sl, sg}, Mmin, s ⊩
∀u(u ∈ a⇄ u ∈ b) → ∀v(a ∈ v ⇄ b ∈ v).

We divide the proof of this claim in a few propositions and lemmata. We first recall some
results about the minimal and maximal fixed point that will be useful in what follows. A function
f : X −→ Y , where X,Y are posets, is said to be Scott-continuous if it preserves all directed
suprema, that is, if for every directed V ⊆ X with supremum in X,

⊔
f(V ) = f(

⊔
V ), where

⊔
is the directed join.

Proposition 3.12. The evaluation of the jump J is Scott-continuous on ⟨W,≤⟩.10

Proof. This follows immediately from the fact that for any set of states X ⊆ W, J (
⋃

i∈X F(si)) =⋃
i∈X J (F(si)), because si ≤ sj iff F(si) ⊆ F(sj). □

By the fact that the operator J is Scott-continuous, we can then infer that MIN can be
reached by iterating the restriction of J over inf(W),11 that is, the state s0 ∈ W such that
F+(s0) = ∅, F−(s0) = ∅, and taking unions at limit stages. Similarly, MAX can be reached by
iterating the evaluation of J over sup(W), and taking intersections at limits.

Definition 3.13 (Level, Classical Level, Substitution Set).

9This set can be understood as the set-theoretic counterpart of the truth-teller sentence τ := T⌜τ⌝.
10The jump J is Scott-continuous on ⟨P(P(CT2))2,⊆⟩, where F(v) ⊆ F(w) iff F+(v) ⊆ F+(w) and F−(v) ⊆

F−(w), since the jump is defined on the valuation function F : W −→ P(P(CT2))2. However, since F (and conse-
quently J (F)) is always evaluated at some state w ∈ W, and the ordering of states in W is induced by F, by a
slight abuse of notation we can identify states with their valuation.

11Strictly speaking, we are applying the jump to the restriction of the evaluation function F over inf(W).
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(1) The level ν(φ) of a sentence φ is the ordinal stage in the iteration of the restriction of J
over inf(W) at which φ obtains its final truth value. When φ is a gap or a glut, ν(φ) = 0.
The classical level νc(φ) is the non-zero ordinal stage in the iteration of the restriction
of J over inf(W) at which φ acquires a value in {0, 1}.

(2) The a/b-substitution set Σa,b is defined as

{A(x) ∈ Ψ | FV(A) ⊆ {x},Mmin, sl ⊮ A(a) ⇄ A(b)}.

In other words, Σa,b is the set of formulae A(x) in Ψ with the variable x free at most,
such that A(a) and A(b) differ in truth value at the least state in Mmin.

To show Theorem (3.11), we combine two claims. The first, following directly by (Ψ-Abs)
from the definition of Σa,b, is

(6) Mmin, sl ⊩ ∀v(a ∈ v ⇄ b ∈ v) iff Σa,b = ∅.

The second claim, to which the rest of the section will be devoted, is that

(7) Σa,b ̸= ∅ only if Mmin, sl ⊮ ∀u(u ∈ a⇄ u ∈ b).

Define Σa,b,σ to be the collection

{A(x) ∈ Σa,b | νc(A(a)) ≤ σ, or νc(A(b)) ≤ σ};

that is, the set of formulae in Σa,b such that A(a) or A(b) has level less than or equal to σ and
value 0 or 1 at the minimal fixed point of J . Then, (7) can be rephrased as: if ∃σ(Σa,b,σ) ̸= ∅
then Mmin, sl ⊮ ∀u(u ∈ a ⇄ u ∈ b).12 We show this claim for sl and then use the dualities
between least and greatest state to obtain the result for sg as well, as shown in Lemma 3.16. We
divide the proof in three claims.

Lemma 3.14. For all σ: if Σa,b,σ ̸= ∅ then Σa.b,σ contains a formula of the form t(x) ∈ x,
with t a term.

Proof. Fix an ordinal σ. Either Σa,b,σ ̸= ∅ or Σa,b,σ = ∅. In the latter case, the claim is
trivially obtained. In the former case, pick the least ordinal δ such that Σa,b,σ ̸= ∅. Seeking
a contradiction, assume now that no formula of the form t(x) ∈ x is in Σa,b,δ. Given this
assumption, we show that Σa,b,δ = ∅. This can be shown by induction on the complexity of
φ ∈ Ψ, since all formulae in Σa,b,σ are in Ψ.

If φ is atomic, we consider the case in which φ ∈ Σa,b,δ is of form t(x) ∈ {y : ψ(x, y)}—the
cases in which φ is a logical truth or a propositional constant are immediate. By assumption,
Mmin, sl ⊮ t(a) ∈ {y : ψ(a, y)} ⇄ t(b) ∈ {y : ψ(b, y)} and νc(t(a) ∈ {y : ψ(a, y)}) ≤ δ or νc(t(b) ∈
{y : ψ(b, y)}) ≤ δ. Without loss of generality, we assume the former. By definition of δ and J ,
there’s a ρ < δ such that νc(ψ(a, t(a))) = ρ. Therefore, since Σa,b,ρ = ∅,

Mmin, sl ⊩ ψ(a, t(a)) ⇄ ψ(b, t(b))

The required contradiction is then readily obtained by Ψ-Abs.
If φ is complex, then we check the case in which it has form ψ → χ—the cases of negation,

other connectives and quantifiers are straightforward by induction hypothesis. If φ is ψ → χ,
where ψ, χ ∈ Ψ, ψ does not contain ∈ and χ does not contain →. Let ψ → χ ∈ Σa,b,δ. Then,
Mmin, sl ⊮ (ψ → χ)(a) ⇄ (ψ → χ)(b), and we can assume without loss of generality that
νc((ψ → χ)(a)) ≤ δ. By induction hypothesis, Mmin, sl ⊩ ψ(a) ⇄ ψ(b) and Mmin, sl ⊩ χ(a) ⇄
χ(b). Therefore, Mmin, sl ⊩ (ψ → χ)(a) ⇄ (ψ → χ)(b), contradicting our assumption.

□

12This is the case because, by construction, sl contains only gaps and no gluts.
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Lemma 3.15. Let δ be the least ordinal such that Σa,b,δ ̸= ∅. If Σa,b,δ contains a formula of
the form t(x) ∈ x, then Mmin, sl ⊮ ∀u(u ∈ a⇄ u ∈ b).

Proof. Assume Σa,b,δ contains a formula of the form t(x) ∈ x. Then Mmin, sl ⊮ t(a) ∈ a ⇄
t(b) ∈ b, and νc(t(a) ∈ a) ≤ δ or νc(t(b) ∈ b) ≤ δ. Assume, without loss of generality, that
νc(t(a) ∈ a) ≤ δ.

Given that a := {y : χ(y)} (since all terms are abstraction terms), there is a ρ < δ such that,
by construction of J , νc(χ(t(a))) = ρ, and, since Σa,b,ρ = ∅, Mmin, sl ⊩ χ(t(a)) ⇄ χ(t(b)).
Then, by construction of J , νc(t(b) ∈ a) ≤ δ. Then, since Mmin, sl ⊮ t(a) ∈ a ⇄ t(b) ∈ b and
Mmin, sl ⊩ t(a) ∈ a ⇄ t(b) ∈ a, Mmin, sl ⊮ t(b) ∈ b ⇄ t(b) ∈ a, so Mmin, sl ⊮ ∀u(u ∈ a ⇄ u ∈
b). □

Lemma 3.16. Mmin, sl ⊩ ψ ⇄ χ iff Mmin, sg ⊩ ψ ⇄ χ.

Proof.
Mmin, sg ⊩ ψ ⇄ χ iff Mmin, sg ⊩ ψ iff Mmin, sg ⊩ χ and Mmin, sg ⊩ ¬ψ iff Mmin, sg ⊩ ¬χ

Mmin, sl ⊮ ¬ψ iff Mmin, sl ⊮ ¬χ and Mmin, sl ⊮ ψ iff Mmin, sl ⊮ χ

Mmin, sl ⊩ ¬ψ iff Mmin, sl ⊩ ¬χ and Mmin, sl ⊩ ψ iff Mmin, sl ⊩ χ

Mmin, sl ⊩ ψ ⇄ χ

□

Proof of Theorem 3.11. We need to verify that both sl and sg satisfy (ExtC). Lemmata 3.14,
3.15 give us (7), which directly covers the claim for sl. By Lemma 3.16, we can reduce the claim
for sg to the former case. □

It’s worth noting that if the set of formulae Φ instead of Ψ is considered, ExtC does not have
natural models.

Observation 3.1. If M is a term model of HBSTΦ such that for any a⃗, I(t)[⃗a] = t for t ∈ CT, M
does not satisfy (ExtC).

Proof. Let a := {x : ⊤} and b := {x : ⊤ ∧ ⊤}. HBSTΦ ⊢ ∀u(u ∈ a ⇄ u ∈ b). However, let M
be a term model of HBSTΦ such that for any a⃗, I(t)[⃗a] = t for t ∈ CT. For all states s in M,
M, s ⊩ a ∈ {x : x = a}, however, M, s ⊮ b ∈ {x : x = a}. □

Henceforth, we will refer to the theory HBSTΨ + ExtC simply as HBST. We will also
abbreviate ∀u(u ∈ x⇄ u ∈ y) as x =e y (x is extensionally identical to y) and ∀w(x ∈ w ⇄ y ∈
w) as x =w y (x is weakly identical to y).

Extensional identity in HBST behaves in a more “classical” way than other nonclassical (and
paraconsistent) set theories based on some form of abstraction and extensionality, especially
inconsistent ones. Indeed, in many paraconsistent and inconsistent set theories based on ab-
straction and extensionality, such as the one introduced by Zach Weber in [24], identity is not
classically reflexive (i.e., there are sets which are both self-identical and not self-identical). On
the other hand, HBST offers us a picture of extensional identity in which all sets are extension-
ally identical to themselves only. This is due to the behaviour of the HYPE conditional, since
HBST ⊢ ∀u(u ∈ x⇄ u ∈ x).

Furthermore, extensional identity and extensional difference are stable across states, since
extensional identity is defined in terms of coincidence of both extension and antiextension.

We can also note that, if Mmin, s ⊩ ∀u(u ∈ a⇄ u ∈ b), for s ∈ {sl, sg}, then Mmin, s ⊩ φ(a) iff
Mmin, s ⊩ φ(b) for all formulae φ ∈ L→

∈ \ {=}, that is, all formulae not containing identity. This
can be shown by straightforward induction on the complexity of φ ∈ L→

∈ \ {=}.
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4. Classes in HBST and HBSTΦ

This section lays out a brief survey of some basic facts about HBST. We start by providing a
definition of the empty set and the universal set, and then list some results about their behaviour.
The possibility to define a universal set, which should behave as the dual of the empty set,
constitutes one of the intuitive advantages of considering set theories based on abstraction and
extensionality. Indeed, most attempts to formulate one such theory, both based on classical logic
(see [10, 6]) and on various nonclassical logics (see [3, 4, 2, 18, 19, 24]) develop some form of
empty set and universal set. HBST supports well-behaved empty and universal sets, thanks to
the behaviour of weak identity and extensional identity licensed by ExtC.

Definition 4.1. The empty set ∅ := {x : ∀y(x ∈ y)} and the universal set V := {x : ∃y(x ∈ y)}
exist by Ψ-Abs.

In HBST, the empty set has no members, on pain of explosion. This is proved by exploiting
the fact that HBST ⊢ ∀x(x =e x), so that HBST ⊢ x ̸=e x → ⊥, where x ̸=e x stands for
¬∀u(u ∈ x ⇄ u ∈ x). Indeed, by definition of ∅, if x ∈ ∅ then x is a member of all sets, hence
x ∈ {u : u ̸=e u}. Then, by Ψ-Abs, x ̸=e x, obtaining the required contradiction. Similarly, by
using the fact that HBST ⊢ ∀x(x =e x) it can be shown that every set is a member of V .

Proposition 4.2. HBST ⊢ ¬∃x(x ∈ ∅), HBST ⊢ ∀x(x ∈ V ).

Since the empty set is provably empty in HBST, it can be defined by several other abstraction
terms, corresponding to all HYPE-logical falsehoods, such as {x : x ̸=e x}, {x : x ̸=w x}, {x : ⊥}.
All these abstraction terms are extensionally identical, and hence weakly identical. Similarly,
there are many extensionally identical abstraction terms for the universal set, corresponding to
all HYPE-logical truths.13

The HYPE conditional, being reasonably well-behaved, allows us to recover the usual laws
of subsets in HYPE. This is in contrast to inconsistent naïve set theories with a material con-
ditional, such as Restall’s [19] and Omori’s [18], which cannot prove the transitivity of subsets.14

However, in light of our definition of weak identity with the contrapositive biconditional ⇄,
subsets need to be defined with contrapositive conditionals to recover their usual properties.

Definition 4.3. The set x is a subset of the set y, in symbols x ⊆ y, iff ∀u((u ∈ x → u ∈ y)∧(u /∈
y → u /∈ x)). The set x is a proper subset of the set y, in symbols x ⊂ y, iff x ⊆ y ∧ x ̸=e y.

Proposition 4.4. Subsets have the following properties in HBST:
(1) HBST ⊢ ∀x(∅ ⊆ x).
(2) Subsets satisfy the properties which are usually associated with partial orders, i.e.

(a) ⇒ ∀x(x ⊆ x);
(b) ⇒ ∀x∀y(x ⊆ y ∧ y ⊆ x → x =w y);
(c) x ⊆ y, y ⊆ z ⇒ x ⊆ z.

Proposition 4.5. Proper subsets satisfy the following properties:

13The behaviour of empty and universal sets in HBST differs from the nonclassical set theories developed by
Restall [19], Weber [24] and Ripley [20]. In the development of his naïve set theory NST, Ripley defines the empty
set as ∅ := {x : ⊥}, the Russell set as r := {x : x /∈ x}, and the so-called “Weber set” as w := {x : r ∈ r}. Then,
by his version of extensionality, the empty set is shown to be identical to the Weber set, but NST ⊢ ∃xx ∈ w,
while NST ⊢ ∀xx /∈ ∅. Similar observations are available in Restall’s and Weber’s frameworks, as they allow for
sets x such that ⊢ x = x and ⊢ x ̸= x. This reasoning is not available in HBST, however, since HYPE, although
paraconsistent, has no provable gluts.

14This is because of the use of the material conditional in an inconsistent set theory. Inconsistent set theories
with non-material conditionals, such as Weber’s [24], prove the laws of subsets, but display an inconsistent
behaviour of identity.
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(1) HBST ⊢ ∀x(x ̸⊂ x);
(2) For an arbitrary HBST-model M, for all objects x, y ∈ D, if at all states s, M, s ⊩ x ⊂ y

then for no s′ in M, M, s′ ⊩ y ⊂ z;
(3) For an arbitrary HBST-model M, for all objects x, y, z ∈ D, if for all states s, M, s ⊩

x ⊂ y, y ⊂ z then it must be the case that for all states s in M, s ⊩ x ⊂ z.

The complement of a, defined by ac := {u : u /∈ a}, and the restricted complement of a with
respect to X, defined as X \ a := {u : u ∈ X ∧ u /∈ a}, exist by Ψ-Abs.

It follows from Ψ-Abs that ⊢ ∀x((xc)c =e x). Complements also have the following properties,
from the De Morgan laws:

⊢ ∀x∀y(xc ∩ yc =e (x ∪ y)c)
⊢ ∀x∀y(xc ∪ yc =e (x ∩ y)c).

By definition, HBST ⊢ ∅ =e V
c and, consequently, HBST ⊢ V =e ∅c. Also, by definition of

complement, HBST ⊢ ∀x∀y(x ⊆ y → yc ⊆ xc).

Proposition 4.6. The union
⋃
w := {x : ∃z(z ∈ w∧x ∈ z)} of a set w exists by Ψ-Abs. Hence

HBST ⊢ ∀x∃y∀u(u ∈ y ↔ ∃z(z ∈ x ∧ u ∈ z)); that is, HBST proves the axiom of Union.

The intersection
⋂
w of a set w is not available in its standard formulation because of the need

to use an instance of → in the corresponding abstraction term. Correspondingly, the axiom
scheme of Separation holds, in HBST, only for formulae in Ψ. This entails that not even ∆0-
separation can be obtained directly in HBST. Indeed, HBST does not allow restricted universal
quantification in instances of abstraction, because expressions of the form (∀x ∈ y)φ contain a
conditional with the membership relation in the antecedent.

Finite unions and finite intersections are defined in the standard way; they are associative,
commutative and satisfy distribution laws.

Recovering other axioms of ZF as theorems of HBST proves more difficult. The standard
formulation of the axiom of Pairing and of the axiom of Infinity, indeed, require the use of
singletons. However, because of the restrictions imposed on the HYPE conditional in instances
of abstraction, the singleton of a set x, defined as {x} := {u : u =e x},15 does not satisfy Ψ-Abs.

The only way to define a form of equivalence which can appear in abstraction terms in HBST
is to use the material conditional, letting x =⊃

e y (read “x is materially equivalent to y”) abbre-
viate the expression ∀u(u ∈ x ≡ u ∈ y),16 and letting x =⊃

w y (“x is materially weakly equivalent
to y”) abbreviate ∀u(x ∈ u ≡ y ∈ u). Then, the material singleton of a set x is defined as
{x}⊃ := {u : u =⊃

e x}.
However, as is the case for FDE, the material conditional in HYPE is exceptionally badly

behaved, since it invalidates A ⊃ A, modus ponens and the deduction theorem.
This entails that material equivalence and material weak equivalence are not equivalence

relations.17 Hence, if a set x is gappy or glutty at some state in some HBST model, then
HBST ⊬ x ∈ {x}⊃.

The intended behaviour of singletons, however, can be recovered by disregarding ExtC and
working in HBSTΦ. Since the identity predicate can now freely appear in instances of abstrac-
tion, the abstraction term {x} := {u : u = x} satisfies Φ-Abs, and HBSTΦ ⊢ ∀x(x ∈ {x}).
Then, by defining {x, y} := {u : u ∈ {x} ∨ u ∈ {y}}, the usual Pairing axiom

∀x∀y∃v∀u(u ∈ v ↔ u = x ∨ u = y)

15Or, alternatively, as {x} := {u : u =w x}.
16Where, as defined above, φ ≡ ψ is a shorthand for (φ ⊃ ψ) ∧ (ψ ⊃ φ).
17To see this, it is sufficient to consider the Russell set r. Since Mmin, sl ⊮ r ∈ r and Mmin, sl ⊮ r /∈ r,

HBST ⊬ ∀u(x ∈ u ≡ x ∈ u), and HBST ⊬ ∀u(u ∈ x ≡ u ∈ x).
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holds in HBSTΦ by Φ-Abs. Also, V , defined as above, is easily seen to satisfy the usual
formulation of the axiom of Infinity:

∃x(∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x)).

It must be noted that, since HBSTΦ lacks extensionality, and is a theory of properties, rather
than sets, abstraction terms are not unique. Hence, for instance, the abstraction term V does
not indicate the universal set, but a universal property. Similarly, singletons and pairs are not
unique. The downside of HBSTΦ, then, is that the results provable in HBST using ExtC,
among which the (weak) uniqueness of the empty and universal set, are not available in HBSTΦ.

In fact, since identity can appear in the abstraction schema of HBSTΦ, we can show that the
axioms of Adjunctive Set Theory (see e.g. [16]), which are mutually interpretable with Robinson’s
arithmetic Q, are derivable in HBSTΦ:

Proposition 4.7. The following are provable in HBSTΦ:
(i) ∃y∀uu /∈ y.
(ii) ∀x∀y∃z∀u(u ∈ z ↔ u ∈ x ∨ u = y).

Another failure of abstraction, however, cripples both HBST and HBSTΦ; namely, the
impossibility to formulate an adequate notion of powerset. Indeed, the abstraction term P(x) :=
{u : u ⊆ x} does not satisfy Φ-Abs nor Ψ-Abs.

Similarly to the case of singletons, the only notion of powerset which can appear in instances
of abstraction is obtained by using the material conditional. Let x ⊑ y iff ∀u(u ∈ x ⊃ u ∈ y);
then, the material powerset of a set x is defined as P⊃(x) := {u : u ⊑ x}. However, the problems
linked to the behaviour of ⊃ in HYPE which we encountered earlier reappear. Indeed, material
subsethood is not reflexive and not transitive; hence, for gappy or glutty x, HBST ⊬ x ∈ P⊃(x).18

Worse even, the material powerset of the empty set is glutty at the greatest state of a HBST
model, even though the empty set has a consistent membership structure. To see this, consider
the set w := {u : r ∈ r}, where r is the Russell set. For all HBST-models M with a least state
sl and a greatest state sg such that sg = s∗

l , for all a ∈ D, M, sl ⊮ a ∈ w, M, sl ⊮ a /∈ w, hence
M, sg ⊩ a ∈ w and M, sg ⊩ a /∈ w. By Ψ-Abs, M, s ⊩ u ∈ P⊃(∅) iff M, s ⊩ ∀z(z /∈ u ∨ z ∈ ∅).
At the greatest state sg, M, sg ⊩ w ∈ P⊃(∅), and M, sg ⊩ w /∈ P⊃(∅).

The previous observations show that using the material conditional in instances of abstraction
where use of HYPE’s → is forbidden by Ψ-Abs does not solve the difficulties encountered in
the treatment of singletons and powerset in HBST, since the material conditional displays
unintended behaviour when dealing with gappy and glutty sets. Such unintended behaviour is
exacerbated by the fact that states in a given HBST-model may have both gaps and gluts.

The minimal model Mmin, however, has only gaps at the least state sl and only gluts at the
greatest state sg. Furthermore, sl and sg are dual, since sl = s∗

g. Then, the behaviour of ⊃ is
fixed at sl and sg. A natural question to ask is whether, locally, that is, relatively to sl or sg

only, we can define a well-behaved notion of powerset.
As shown by Leitgeb [13, Observation 39], indeed, if M is a HYPE-model with the property

of having a least state sl and a greatest state sg such that sg = s∗
l , then sl ⊮ A ∧ ¬A and

sg ⊩ A ∨ ¬A. Furthermore, the logical consequence relation of K3 for a language based only on
the symbols {∧,∨,¬,∃,∀} coincides with the consequence relation for →-free formulae in HYPE
defined as truth preservation at sl. The logical consequence relation of LP for a language based
on {∧,∨,¬,∃,∀} coincides with the consequence relation for →-free formulae in HYPE defined
as truth preservation at sg.

18To show the failure of reflexivity, consider the Russell set: M, sl ⊮ ∀u(u /∈ r ∨ u ∈ r), so M, sl ⊮ r ⊑ r.
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Also, as a consequence of the clauses for conditionals in HYPE, in a two-state HBST-model
where sl is the least state, sg is the greatest state and sl = s∗

g, if sl ⊩ φ ⊃ ψ then sl ⊩ φ → ψ,
and if sg ⊩ φ → ψ then sg ⊩ φ ⊃ ψ.

It is easy to see then that the HBST results we obtain locally in the least state and the
greatest state of Mmin correspond, in their →-free fragment, to set theory in K3 and LP.19

More precisely, given the relation between HYPE’s → and ⊃ in Mmin, HBST has the same
consequences as set theory in LP at the greatest state sg, while, at sl, HBST expands set theory
in K3 with the global results obtained with the use of HYPE’s →.

Considering the minimal model Mmin, furthermore, makes it possible to exploit the dualities
between sg and sl to obtain consequences of ExtC. For instance, note that in Mmin, for all
a, b ∈ D, and for s ∈ {sg, sl}, Mmin, s ⊩ a =e b or Mmin, s ⊩ a ̸=e b, while this is not generally so
in HBST.20

However, powerset is still not available, because the material subset behaves badly both at sl

and sg: indeed, it is not reflexive at sl, due to the presence of gappy sets, and it is non-transitive
at sg, because sg inherits all the pathologies of LP set theory already encountered in Restall [19]
and Omori [18]. The failure of powerset deriving from the lack of a good conditional which can
feature in formulae satisfying Ψ-Abs or Φ-Abs leads set theory in HYPE to an impasse, similar
to that encountered by other nonclassical theories with abstraction and extensionality.

5. Open Questions and Future Work

The paper takes some initial steps in understanding abstraction and extensionality principles
in the logic HYPE. We list some questions that are left open in our investigation.

First, it would be interesting to obtain clear proof-theoretic reductions between HBST,
HBSTΦ and some classical (weak) set theories. For instance, Proposition 4.7 provides a lower
bound for the strength of HBSTΦ. Can Adjunctive Set Theory be interpreted in HBSTΨ?
What is the logical strength (measured in terms of classical weak set theories) of HBST?

Second, it would be interesting to check the status of HBST and HBSTΦ as class theories
over an ontology of sets, such as classical ZFC. By the results of [9], a compositional theory of
satisfaction over ZFC will be as strong as—in terms of L→

∈ -theorems—Kripke-Feferman truth
over ZFC. How does the addition of HYPE-abstraction for classes over ZFC compare with such
compositional theories of satisfaction?

Furthermore, it would be interesting to consider alternative methods to obtain a (fixed-point)
interpretation of class membership over a HYPE model. For instance, one promising option is
to replace HYPE-satisfaction (cf. the definition of our valuation function F in §3) with a su-
pervaluation schema collecting formulae that are not just HYPE-true but HYPE-“supertrue”.
The construction could deliver stronger abstraction principles consistent with HYPE.
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19Classic references for set theory in K3 and LP are, respectively, Skolem [21] and Restall [19].
20An example of this is that at the minimal model we recover a weakened version of the law of ordered pairs,

with pairs defined using material singletons. Indeed, we can show that the law of ordered pairs holds at Mmin for
sets with no gaps, i.e. sets x such that sl ⊩ x =⊃

e x.
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