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Abstract

Starting with a trustworthy theory T , Galvan (1992) suggests to read o�,
from the usual hierarchy of theories determined by consistency strength, a
�ner-grained hierarchy in which theories higher up are capable of ‘explaining’,
though not fully justifying, our commitment to theories lower down. Oneway
to ascend Galvan’s ‘hierarchy of explanation’ is to formalize soundness proofs:
to this extent it o�en su�ces to assume a full theory of truth for the theory
T whose soundness is at stake. In this paper, we investigate the possibility
of an extension of this method. Our ultimate goal will be to extend T not
only with truth axioms, but with a combination of axioms for predicates for
truth and necessity. We �rst consider two alternative strategies for providing
possible worlds semantics for necessity as a predicate, one based on classical
logic, the other on a supervaluationist interpretation of necessity. Wewill then
formulate a deductive system of truth and necessity in classical logic that is
sound with respect to the given (nonclassical) semantics.

1 hierarchies of theories and evidences

Logical complexity is one of the most fascinating and deep facts stemming from the
incompleteness phenomena, and it is also one of themain themes of Sergio Galvan’s
ongoing journey into logic and philosophy. Just to mention a well-known example,
the complexity of the set of elementary truths of a �rst-order theory1 containing a
modicum of arithmetic will always exceed – in a formally precise sense – the com-
plexity of the set of theorems of that theory.

�e mismatch between truth and provability is one of the central research in-
terests of Sergio Galvan, as it became clear already with his �rst work on Tarski
(Galvan 1973).�e incompleteness theorems determine a hierarchy of ‘natural’ the-
ories given by consistency strength or similarmeans of comparison.�e consistency
of Zermelo-Fraenkel set theory with choice ZFC can be proved for instance in ZFC

1Here by theory we always intend theory in classical logic.
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plus the existence of the least wordly ordinal, which will then occupy a higher posi-
tion than ZFC in the hierarchy. More generally, it is a consequence of Gödel’s results
that the consistency of a su�ciently rich T can only be proved in theories ‘stronger’
than T . Suitable set existence axioms, but also re�ection principles, truth principles,
have all been employed to properly extend T to theories that are capable of deriving
its consistency or equivalent statements.
As Galvan (1992) lucidly points out, there is little epistemological interest in jus-

tifying the acceptance of T under assumptions stronger than T , at least if the kind
of justi�cation we are a�er is close to a fully-�edged foundation. Galvan’s analy-
sis of incompleteness, therefore, suggests to read-o�, in the hierarchy of theories
given by pure strength, a �ner-grained hierarchy of explanation. To this hierarchy
belong theories that are capable of formalizing and making explicit our commit-
ment to theories lying lower down in the hierarchy. �e theory PA+Con(PA) (cf.
§2), obtained by adding a (intensionally correct) consistency statement to PA, will
not belong to Galvan’s hierarchy of explanation, although its consistency strength
trivially exceeds the one of PA; the simple assumption of the consistency of PA does
not represent in fact an explanation of our acceptance of PA, in Galvan’s sense, but
a mere stipulation. By contrast, the subsystem of second-order arithmetic ACA will
belong to the hierarchy of explanation as it can de�ne a full truth predicate for PA
– more speci�cally, a full truth class for PA: this su�ces for formalizing in ACA the
metatheoretic proof of the soundness of PA.
It is therefore natural to assume that one way to climb up Galvan’s hierarchy of

explanation, given a trustworthy starting point T , is to assume a theory of truth for
it. In this way one may achieve a sort of ‘explanatory foundation’ (Galvan 1992) –
even though not a full justi�cation of our trust in the base theory – rooted in our
grasp of the notion of truth for T .�ere are several ways to add a theory of truth to
a ground theory; a comprehensive treatment is Halbach (2014).
In this paper we investigate a possible extension of this method. One might see

this work as an attempt to climb up Galvan’s hierarchy of explanation by resorting
to our grasp of ‘logical’ concepts such as truth itself but also of other modal notions,
in primis necessity.2 In other words we investigate the possibility of extending our
base theory with ‘natural’ axioms governing modalities conceived as predicates and
not as operators.�is line of research is receiving new attention in the recent liter-
ature; Quine, Carnap, Montague have all already considered formal treatments of
predicative uses of modal notions,3 but the success of possible world semantics for
operator modal logic and the presence of paradoxes in the predicate setting (see §3)

2We consider truth as a modal notion in the same vein of somemedieval logicians such asWilliam
of Ockham. See for instance part II of the Summa Logicae.

3See for instance Carnap (1934), Quine (1960), Montague (1970).
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have distracted much attention from it.
Halbach et alii (2003) have restored some con�dence in the possibility of bridg-

ing the gap between modal logics and formal approaches to modal notions con-
ceived as predicates. �ey have shown that, despite the presence of paradoxes, it
is still possible to extend possible-worlds semantics to languages featuring modal
predicates at least for some modal frames (cf. §4.1). Halbach&Welch (2009) have
even suggested a generalization to arbitrary frames: a variant of their construction
will be considered below.

�e reader familiar with operatormodal logics should not be worried: the pred-
icate approach can be considered a generalization modal logics. Anything that can
be said and proved in the operator approach can be mimicked in the predicate set-
ting when suitable restrictions to the predicate language have been performed (see
Gupta (1982) and Schweizer (1992)): it is in fact always possible to de�ne an oper-
ator via a predicate. What we will say below will be no threat to the usual operator
approach; paradoxes arise only when the expressive power of predicates and diag-
onalization comes into the picture. For the interested reader, Stern (2015) is a thor-
ough and up to date treatment of the current research on syntactical treatments of
modalities, including many original contributions by Stern himself.
We end this introductory section with three caveats. First of all we refer to truth,

necessity, possibility, etc. as ‘logical’ notion in a rather liberal sense. Of course we
do not advocate the view that the theories considered below amount to ‘logics’ in
the very same sense in which �rst-order logic is ‘logic’; rather we highlight the dif-
ferent possibilities that one faces when extending a given base theory. In this sense
we oppose ‘logical’ principles, such as the ones characterizing concepts such as truth
and necessity, to ontologically committing ‘mathematical’ principles, such as set ex-
istence assumptions. Furthermore, it is not our intention to suggest a revision of
modal logics: the predicate approach, in our view, is a framework that naturally that
naturally captures the ubiquitous predicative uses of modalities, and it is in this re-
spect an interesting alternative tomodal logics or its extensions. Finally, in this work
we will only able to partially accomplish the promised ascent given by the combina-
tion of alethic modalities. Since the predicate approach to modalities is a lively but
young �eld of research, there is some work required before tackling a fully-�edged
proof-theoretic investigation of modal theories: in particular, as we shall see later
on, consistency is a highly nontrivial matter.

Plan of �e (rest of the) Paper. In §2 we introduce some of the preliminaries
needed in the core sections of the paper. Further terminology and notation will be
introduced in §4.1. In §3 we focus on some well-known paradoxes of the predicate
approach such as Montague’s, and on some less well-known antinomies essentially
due to the interaction ofmore than onemodal predicate. §4will be devoted to possi-
ble worlds semantics for languages expanding our base language L with a primitive
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necessity predicate: we �rst describe some strategies available to retain a classical
interpretation of necessity by restricting themodal space, and then remove these re-
strictions via a quasi-classical interpretation of necessity based on supervaluations.
§5 will �nally be devoted to deductive systems: we extend Cantini’s theory of truth
VF with axioms for necessity and prove its soundness with respect to a multimodal
semantics obtained by adapting the semantics given in §4. We conclude in §6 with
some comments to the content of the previous sections and sketch some possible
extensions.

2 some preliminaries

Robinson’s arithmetic Q is o�en considered to be the theoretical lower-bound for
the derivability of non-intensional independence results such asGödel’s �rst incom-
pleteness theorem, Tarski’s and Montague’s theorems. Let L = {0, S,+,×}. �e
axioms ofQ are the universal closures of the following formulas:

S x ≠ 0Q1
S x = S y → x = yQ2
x ≠ 0→ ∃y (x = Sy)Q3
x + 0 = xQ4
x + Sy = S(x + y)Q5
x × 0 = 0Q6
x × Sy = (x × y) + xQ7

�e axiom Q3 is a weak form of induction and it indispensable to characterize the
successor function, as in its absence there may be nonzero natural numbers without
a predecessor. Q3 becomes derivable, however, when induction is added toQ.4

Peano arithmetic (PA) will play an important role in what follows: it is the result
of adding toQ the schema of mathematical induction

(Ind) φ(0) ∧ ∀x(φ(x)→ φ(Sx))→ ∀x φ(x)

for all L-formulas φ(v) with at most v free.
PA will be the theory formalizing the structure and properties of the bearers

of modal ascriptions. We assume a standard arithmetization of the usual primitive
recursive syntactic notions and operations ofL and its extensions as it can be found,
for instance, in Galvan (1992). In practice, we will work in a de�nitional extension
of PA in which function symbols (e.g. for syntactic operations) for some primitive

4Q is extremely weak. Saul Kripke observed in fact that cardinal numbers are a model of Q, and
thus there are entities, such as in�nite cardinals, for which Sx = x.
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recursive functions are available.�ey can however be eliminated in the usual way
(see again Galvan (1992)).
As to notational conventions, we only give few instructive examples: ¬. x stands

for the L-term representing in PA the operation of pre�xing a negation symbol to
x, and similarlyN. t is theL-term representing the result of pre�xing the predicateN
of the language LN ∶= L∪ {N} to the object coded by t; SentL(x) is a PA-de�nable
formula representing the primitive recursive set of sentences of L; the L-formula
BewT(x) represents the recursively enumerable set of theorems of the recursive the-
ory T ; x○ stands for the PA-de�nable evaluation function assigning to each closed
term its value. When this is clear from the context, we follow the customary practice
and do not distinguish between sentences and their codes.
We conclude this section by introducing a technical device that is o�en useful

to interpret self-applicable predicates. A sound translation function τ∶LN → L1
for sentences of the form NN. t, replacing N(⋅) with some L1-formula ξ(⋅) should of
course yield ξ(τ.N. t) and not ξ(Nt), where the notation τ.(⋅) is like in the previous
paragraph. To achieve the required translation, one may resort to the recursion
theorem (Rogers 1987, §11.2), that yields for any recursive f (x , y) an index e such
that f (e , y) = [e](y), where [⋅](⋅) is the universal program. If we recursively de�ne
a function τ0 such that, in the relevant case, τ0(x ,NNt) = ξ([x](Nt). ), we would
then be able to apply the recursion theorem and �nd an index e for τ0 such that
[e](NNt) = ξ([e](Nt). ). We are done by letting τ(x) ≅ [e](x).

3 montague’s paradox and extensions

Paradox is one of the main challenges that the proponent of the predicate approach
to modalities has to face. In this section we introduce some paradoxical patterns of
reasoning daunting the predicate approach by distinguishing the unimodal frame-
work, in which our ground language is extended with only onemodality, and amul-
timodal setting, in whichmoremodalities are taken to interact. As it happens, para-
dox arises in both frameworks.
Montague’s paradox is arguably the most fudamental form of paradoxicality

in the unimodal setting. �e theorem can be stated also in a more general form
(Montague 1974), but here we shall be content with the following.

Lemma 1 (Montague). Let T ⊇ Q and assume there is a unary (possibly de�ned)
predicate χ such that, for all φ ∈ LT :

T ⊢ χ⌜φ⌝→ φ(T)
if T ⊢ φ, then T ⊢ χ⌜φ⌝(NEC)

�en T is inconsistent.

5



Proof. By the diagonal lemma, there is a sentence γ of LT such that

T ⊢ γ ↔ ¬χ⌜γ⌝

Now we reason in T as follows:

χ⌜γ⌝→ γ (T)
χ⌜γ⌝→ ¬γ def. γ
¬χ⌜γ⌝
γ by def. γ
χ⌜γ⌝ (NEC)

qed

It is easy to see why Lemma 1 or variants thereof have led many authors, including
Montague, to conclude that virtually no modal reasoning can be carried out in the
predicate approach to modality. (T) and (NEC) are in fact basic for our understand-
ing of some modalities, above all de dicto necessity.

�is is, as we shall see shortly, a rather hasty conclusion. �ere are many ex-
amples of predicative uses of modalities in our philosophical reasoning, including
core claims such as ‘�ere are a posteriori necessary truths’, or ‘Any analytic judg-
ment is necessary’, that are most naturally formalized usingmodal predicates. Some
portions of our reasoning with predicative modal asciptions can be rescued from
paradox.5

One might argue at this stage that, as in the case of the Liar paradox, there is a
straightforward way out of paradox given by Tarski’s hierarchy of languages. If this
is obviously true for the unimodal setting, when we move to languages featuring at
least twomodalities typing is not a su�cient solution anymore. Halbach (2006), for
instance, produced the following, illuminating example involving two modalities
M1 andM2 that closely resemble truth and necessity.
To formulate Halbach’s result, let T ⊇ Q and expand LT with predicatesM1 and

M2; call the resulting languageL+. We say that φ ∈ L+ does not containMi if it does
not contain any used occurrences of it, but it may containmentioned occurrences.

Proposition 1 (Halbach). Let T+ extend T with the axiom schemata

M1⌜φ⌝↔ φ for all φ ∈ L+ not containing M1.(1)
M2⌜φ⌝→ φ with φ ∈ L+ not containing M2(2)

φ
M2⌜φ⌝

with φ ∈ L+ not containing M2(3)

5Surely that are ways to strengthen the operator approach and mimic the expressive power of
modal predicates, but one can hardly deny that the resulting formalizations will be less natural.
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�en T+ is inconsistent.

Proof. We reason in T+:

ν ↔ ¬M1⌜M2⌜ν⌝⌝ diagonal lemma
M2⌜ν⌝→ ¬ν by (1)
M2⌜ν⌝→ ν (2)
¬M2⌜ν⌝
¬M1⌜M2⌜ν⌝⌝ by (1)
ν def. ν
M2⌜ν⌝ (3)

qed

Our emphasis on the use/mention distinction should be now more motivated: the
paradox would in fact disappear if instead of sentences of L+ we had chosen sen-
tences of the ground languageLT , where alsomentioned occurrences of themodal-
ities are not allowed.
Proposition 1 is only one of the paradoxes arising from the interaction of modal

predicates. For instance, a paradox involving knowledge structurally similar to Propo-
sition 1 can be found in Halbach (2008); Horsten & Leitgeb (2001) also show that
seemingly innocuous assumptions on the structure of time lead to the inconsis-
tency of the future. Proposition 1 was preferred to other choices for a simple reason:
it suggests that multimodal paradoxes are somewhat harder to eradicate than their
unimodal cousins.
Some authors have already set the basis for a systematic study of themultimodal

paradoxes and their properties. A promising line of research consists for instance in
applying insights from diagonalmodal logics to analyse the structure ofmultimodal
paradoxes. �e fundamental idea behind this approach is to mimic the expressive
power of arithmetic by considering propositional languages expanded with con-
stants for modal ascriptions and a diagonal axiom for each of them. �is boost in
the expressive power provides enough information to analyse the ‘logical’ structure
multimodal paradoxes.�e interested reader may consult Egré (2005) and Fischer
& Stern (2015) for further details.

4 models for necessary truths

What has been said in the last section strongly suggests extra care in handling ex-
pansions ofLwithmodal predicates.�erefore in this sectionwe startmore humbly
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by providing a possible-worlds semantics for the expansion of L with a single ne-
cessity predicateN. In the next section we will see how to combine a truth predicate
with the necessity predicate.
We exclusively focus on de dicto necessity, that is we consider only necessity

ascriptions that apply to propositions, and not de re necessity ascriptions, which at-
tribute a property to an (or possiblymore) object by necessity. If the formalization of
de dicto necessity as a unary predicate applying to names of sentences seems uncon-
troversial,6 there are several options to deal with de re necessity ormore generally de
re modality. A promising option is to employ a binary predicate applying to unary
formulas (playing the role of properties) and sequences of domain objects (variable
assignments), mimicking a binary predicate for satisfaction. A careful treatment to
de re modality, also in comparison to indexed modalities in modal logic, is deferred
to a forthcoming work.
As we have mentioned in the introductory section, there are essentially to ways

of constructing a possible world semantics for LN = L ∪ {N}. One can either con-
sider a speci�c set of frames and allow for a classical interpretation of N, or instead
impose no restrictions to the admissible frames and interpret the necessity predicate
in a nonclassical way. We are mostly interested in the latter option, but for the sake
of completeness we will also brie�y sketch the fundamentals of the former without
proofs: some terminology and the core insights of the classical approach will in fact
also be useful later on.

4.1 Classical Interpretations of Necessity

We begin with some notions that may sound familiar from operator modal logic,
but that it is worth repeating due to the new environment.�ey will also be useful
in later sections.

De�nition 1. Models of LN will be pairs (N, X) where X is the extension of N.�ese
pairs are ‘worlds’ in a possible worlds model.�erefore since we are dealing with stan-
dard models of L only, we may write (w , X) and (N, X) interchangeably.

(i) A frame is a pair (W , R) with W ≠ ∅ and R ⊆W ×W;

(ii) A possible worlds model is a triple (W , R,V), with (W , R) a frame and V a
function from worlds to subsets of LN such that for every w ∈W:

V(w) = {φ ∈ LN ∣ ∀u(wRu⇒ V(u) ⊧ φ)}

6Obviously the controversy may arise at the level of the bearers of modal ascriptions. As usual,
the sentence or the proposition are equally good candidates. Following the recent literature we take
sentence types to be the bearers of modal ascritpions.
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(iii) A frame (W , R) admits a valuation if and only if there is aV such that (W , R,V)

is a possible worlds model.

We notice that, unsurprisingly, many basic consequences of the de�nitions carry
over in the predicate approach. In particular, we have the standard properties of
models of the operator modal logic K.

Lemma 2. For (W , R,V) a possible worlds model and w ∈W:

(i) (N,V(w)) ⊧ N⌜φ⌝ if and only if (∀v ∈W)(wRv ⇒ (N,V(v)) ⊧ φ)

(ii) if (N,V(v)) ⊧ φ for all v ∈W, (N,V(w)) ⊧ N⌜φ⌝.

(iii) (N,V(w)) ⊧ N⌜φ → ψ⌝ ∧N⌜φ⌝→ N⌜ψ⌝

Next we �nally turn to the di�erences between the predicate and operator ap-
proach. If, given a frame (W , R) and worlds modelling L, we can always construct
a model for the language L ∪ {◻} by recursively de�ning truth for L◻, the same
strategy fails for the languageLN. Only certain frames admit a valuation, due to the
paradoxical phenomena considered in the previous section. For instance, Lemma 1
shows that no re�exive frame admits a valuation for the necessity predicate.
One may wonder at this stage whether there are any general criteria to isolate

the frames support a valuation. To this end, we introduce new terminology.

De�nition 2.

(i) A (binary) relation R is converse well-founded on a set X i� all nonempty Y ⊆

X have an R-maximal element.

(ii) A frame (W , R) is converse well-founded i� R is converse well-founded on W.

(iii) If (W , R) is a frame and R converse well-founded on W, the rank of w ∈W is:

ρ(w) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

0, if there is no v with wRv
α + 1, if ∃v(wRv ∧ ρ(v) = α ∧ ∀u(wRu⇒ ρ(u) ≤ α))

(iv) �e converse well-founded part of {v ∣ wRv}w.r.t. W is the largest R-upwards
closed X ⊆W such that R−1 is well-founded on X.

(v) �e rank of a converse ill-founded world is the rank of its converse well-founded
part.
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If ρ(w) = 0, we say that w is a dead end.
Depending on the frames considered, it is possible to impose su�cient con-

ditions on the existence of valuations. Converse well-foundedness is one of them.
By trans�nite induction on the rank of w ∈ W in a converse well-founded frame
(W , R) one de�nes the valuation

(4) V(w) ∶= {φ ∈ SentLN
∣ ∀v(wRv ⇒ (N,V(v)) ⊧ φ)}

�e crucial point is that if R is converse well-founded, we have the following picture
for any w ∈W ,

u1 u2 un w

In other words, from any w it is alway possible to reach a dead end, u1 in this case,
in �nitely many steps.�e valuation de�ned by (4) is thus unique, yielding

Proposition2 (Gupta&Belnap). If (W , R) is conversewell-founded, it admits a unique
valuation.

For frames containing converse ill-founded worlds, it is also possible to �nd
a valuation under certain circumstances. To see this, let us consider the operator
Φ∶P(ω)→ P(ω)

Φ(X) ∶= X ∩ {φ ∈ SentLN
∣ (N, X) ⊧ φ}

Φ(⋅) is a decreasing and anti-monotone operator (i.e. Φ(Y) ⊆ Y for all Y and α ≤ β
entails that Φα(Y) ⊇ Φβ(Y)).�erefore, if one starts with Φ0(LN) ∶= Φ(LN) and
iterates the application along an ordinal path – taking intersections at limit stages
– one reaches a �xed point with associated a closure ordinal, that is a stage κ in
which Φκ(LN) = Φβ(LN) for all β ≥ κ. �e closure ordinal of Φ(⋅) has also been
computed by Halbach et alii (2003) as the least α such that the corresponding level
of the constructible hierarchy Lα possesses a Σ1-elementary end extension (Halbach
et alii 2003, Prop. 21). In particular, we have κ > ωCK

1 , the �rst nonrecursive ordinal.
If a frame (W , R) is transitive and has converse ill-founded worlds w, the �xed

point Φκ(LN) can always be used as valuation when the rank of w is greater than
or equal to κ.�at is

Proposition 3 (Halbach et alii (2003)). If (W , R) is transitive and the rank of its
converse ill-founded worlds is not smaller than κ, then (W , R) supports a valuation.

�e closure ordinal κ is also useful to impose necessary conditions on the ex-
istence of valuations in transitive frames. Let A be the class of admissible ordinals
(without ω) with limits (see for instance Devlin (1984)).
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Proposition 4 (Halbach et alii (2003)). If (W , R) is transitive and admits a valua-
tion, then for a converse ill-founded world w ∈W, either ρ(w) ∈ A or ρ(w) ≥ κ.

Proposition 4 tells us that if (W , R,V) is a possible worlds model and R is converse
ill-founded, then there will always be, for w ∈W , an initial well-ordered portion of
‘rank’ α ∈ A or greater-equal than κ.�is means that frames (W , R) whose worlds
have rank less than the �rst admissible ordinal ωCK

1 admit a valuation if and only
if R is converse well-founded. Moreover, Proposition 4 can be generalized to non
transitive frames, if we focus on the transitive closure of the accessibility relation.
In this brief overview our main intention was to highlight a fundamental fact:

if one is interested in a classical interpretation of the necessity predicate, there are
strong limitations one has to face. Again this is not a problem for the predicate
approach if opposed to the operator approach, as we have already mentioned that
the operator language can be straightforwardly translated in the predicate language.
�e problem is internal to the predicate approach.�ere is in fact an alternative to
the classical approach sketched in this section: we can preserve the generality of the
possible worlds semantics for operator modal logics if we move to a nonclassical
setting.

4.2 Arbitrary Frames: Supervaluations

In this section we present a method for constructing possible worlds models for
arbitrary frames (W , R). As before, worlds w ∈ W are standard models of the
ground language L. �e strategy is reminiscent of Kripke’s �xed-point construc-
tion (Kripke 1975), which can be also seen as a method for generating models for
LN in a re�exive frame ({w}, R). To produce models for arbitraryW , one has to
generalize Kripke’s construction.
Halbach&Welch (2009) have proposed a similar generalization of Kripke’s the-

ory based on the StrongKleene evaluation schema. We explore an alternative option
and employ the supervaluational scheme introduced by Van Frassen (1966). Wewill
highlight some nice features of supervaluations as opposed to the Strong Kleene ap-
proach a�er introducing few de�nitions and some of their consequences.
As before, (w , F(w)) will denote a model of LN in which w speci�es the stan-

dard model of the ground language but X is now an evaluation function F∶W →

(SentLN
×SentLN

): at each worldw ∈W it assigns disjoint extension and an antiex-
tension to N. We also de�ne an ordering ⪯ between evaluation functions such that
F ⪯ G if, at anyw ∈W , F(w)+ ⊆ G(w)+ and F(w)− ⊆ G(w)−. We de�ne a (binary)
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relation ⊧vf0 linking pairs (w , X) and LN-sentences φ:7

(w , F(w)) ⊧vf0 φ ∶⇔ (∀G)(F ⪯ G ∧G(w)+ ⊆ ω ∖ F(w)− ⇒ (w ,G(w)+) ⊧ φ)

�e condition G(w)+ ⊆ ω/F(w)−, together with the disjointness of extension and
antiextension, will force consistent �xed points as extensions of the necessity predi-
cate; that is, at any worldw for no φ ∈ LN, ¬φ and φwill be in the ultimate extension
of the necessity predicate. �e relation ⊧vf0 extends the standard supervaluational
picture according to which truth is satisfaction in all candidate extensions of a start-
ing set; here we have merely generalized this picture to many worlds.8

To assign a suitable interpretation to the necessity predicate, we consider a vari-
ant of the strategy adopted by Halbach&Welch (2009) and impose further condi-
tions on evaluation functions. We let EV be the set of such evaluations:

De�nition 3. �e operator ∆∶EV → EV, at each w ∈W, is such that:

(∆(F))(w)+ ∶= {φ ∣ ∀v(wRv ⇒ (v , F(v)) ⊧vf0 φ)}

(∆(F))(w)− ∶= {φ ∣ ∃v(wRv ∧ (v , F(v)) ⊧vf0 ¬φ)}

�e following is an immediate corollary of the de�nitions.

Corollary 1. �e operator ∆ is monotone with respect to ⪯, that is, for all w ∈W,

F ⪯ G ⇒ (∆(F))(w) ⪯ (∆(G))(w)

�e monotonicity of ∆ implies the existence of �xed points. �is follows from ab-
stract cardinality considerations (Moschovakis 1974,�m. 1.A.1). As before, wemay
track the applications of ∆ on an ordinal path using suitable indices. In other words
∆α(F)(w) denotes the αth application of ∆ to the starting evaluation function F at
a world w, taking unions at limit stages. A �xed point of ∆ will thus be an ordinal κ
such that ∆κ(F)(w) = ∆β(F)(w) for all β ≥ κ.
By re�ecting on the properties of ∆(⋅), we have

Proposition 5. If F is a �xed point of ∆, for all φ ∈ LN and frames (W , R) with
w ∈W:

(w , F(w)) ⊧vf0 N⌜φ⌝ ⇔ for all v, if wRv, then (v , F(v)) ⊧vf0 φ(5)
(w , F(w)) ⊧vf0 ¬N⌜φ⌝ ⇔ exists a v with wRv and (v , F(v)) ⊧vf0 ¬φ(6)

7�is is in a sense a simplifying choice: we dispense with variable assignments as we assume that
we have constant domains and �xed names for all objects at every w ∈W .

8�ere are other possible choices of the evaluational scheme, still in the supervaluational spirit.
See Burgess (1986) or Fischer et alii (2015).
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Proof.
Ad (5). (⇒) If (w , F(w)) ⊧vf0 N⌜φ⌝, then for all evaluations G ⪰ F, including

F itself: if G(w)+ ⊆ ω ∖ F(w)−, then (w ,G(w)+) ⊧ N⌜φ⌝. �erefore, φ ∈ F(w)+.
Since F is a �xed point of ∆, F(w)+ = (∆(F))(w)+, and φ ∈ (∆(F))(w)+, that is

∀v(wRv ⇒ (v , F(v) ⊧vf0 φ)

(⇐) If for all vwithwRv, (v , F(v) ⊧vf0 φ, by de�nition of ∆ alsoφ ∈ (∆(F))(w)+.
Again by the �xed point property, φ ∈ F(w)+. �is means that for all evaluations
G 1⪰ F, and a fortiori the ones in which G(w)+ ⊆ ω ∖ F(w)−, φ ∈ G(w)+. By the
classical satisfaction relation, (w ,G(w)+) ⊧ N⌜φ⌝. By de�nition of ⊧vf0 we �nally
obtain

(w , F(w)) ⊧vf0 N⌜φ⌝

Ad (6). (⇒): If (w , F(w)) ⊧vf0 ¬N⌜φ⌝ the for allG ⪰ F andG(w)+ ⊆ ω∖F(w)−,
φ ∉ G(w)+. A fortiori, φ ∉ ω ∖ NSentLN

∖ F(w)− where NSentLN
is the set of

numbers that are not LN-sentences; therefore φ ∈ F(w)− = (∆(F))(w)−.
(⇐). If ∃v(wRv ∧ (v , F(v)) ⊧vf0 ¬φ), then φ ∈ (∆(F))(w)− = F(w)−.�ere-

fore (w ,G(w)+) ⊧ ¬N⌜φ⌝ for any G ⪰ F and G(w)+ ⊆ ω ∖ F(w)−, that is

(w , F(w)) ⊧vf0 ¬N⌜φ⌝

qed

�eminimal �xed point I∆ is obtained by closing the empty evaluation under ∆ at
anyworldw ∈W , and it is theminimal �xed point that we now examine to highlight
some nice features of the supervaluationist approach to necessity.
Let us call the contingency teller the sentence µ such that

Q ⊢ µ↔ ¬N⌜µ⌝

Montague’s paradox rules out re�exive frames in the classical setting. �e contin-
gency teller played an important role in the proof of Lemma 1. To see how the non-
classical setting helps in dealingwith paradoxes, we now show that in the new setting
µ will be ‘gappy’, that is neither necessary or contingent, in the minimal �xed point.

Lemma 3. Let (W , R) be a frame. �e contingency teller is neither in I+∆(w) nor in
I−∆(w) for any w ∈W.

Proof. We prove the claim by induction on the construction of the minimal �xed
point of ∆.
At stage ∆0(∅)(w) ∶= (∅,∅), the claim is trivially satis�ed.

13



At successor stages α + 1, if µ ∈ Iα+1
∆ (w)+, then

(7) ∀v(wRv ⇒ (v , Iα
∆(v)) ⊧vf0 ¬N⌜µ⌝)

�at is, µ ∉ G(v)+ ⊆ ω∖Iα
∆(v)

− for all suitableG, including ω∖NSentLN
∖Iα

∆(v)
−.

�erefore φ ∈ Iα
∆(v)

−, quod non by induction hypothesis.
If, by contrast, µ ∈ Iα+1

∆ (w)−, therewill be, for all extensionsG ofIα
∆ , (v ,G(v)+) ⊧

N⌜µ⌝ at some accessible v.�us µ ∈ Iα
∆(v)

+, again contradicting the induction hy-
pothesis.
Finally, if µ ∈ Iλ

∆ for a limit λ, the claim follows from the previous steps by
de�nition of ∆(⋅). qed

By suitably adapting the argument of Lemma 3, one easily shows that ¬µ cannot
be inI∆. Moreover, a generalization of this arguments shows that there are consistent
�xed points of ∆.
As we have already observed, the operator ∆(⋅) compares to the operator based

on the Strong Kleene evaluation schema considered in Halbach&Welch (2009). It is
well-known since Kripke (1975) that the Strong Kleene schema yields an attractive
picture of self-applicable truth predicate. Above all, it yields a compositional seman-
tics, e.g. A∨ B is truesk if and only if A is truesk or B is truesk with A, B sentences of
a base language such as L plus a primitive truth predicate.
If necessity and not truth simpliciter is at stake, one may argue that composi-

tionality is not as important as, for instance, establishing the necessity of all laws
of classical logic; so A ∨ ¬A should be necessary even though we do not have the
resources to �nd out whether A or its negation are true.�e following results show
that the supervaluationist approach captures, in the predicate approach, the picture
of necessity just sketched.

Proposition 6.

(i) All logical laws, including the laws of the conditional (e.g. φ → φ for φ ∈ LN)
valid in I∆ (i.e. in I+∆(w) at any w);

(ii) Let PAN simply PA formulated in LN. All theorems of PAN are valid in I∆.

Proof. In both cases one re�ects on the de�nition of ∆(⋅). At stage 1 of the construc-
tion of I∆(w) for arbitrary w, we have

(∆1(∅,∅))(w) = ⟨
{φ ∣ ∀v(wRv ⇒ (v , (∅,∅)) ⊧vf0 φ)},

{φ ∣ ∃v(wRv&(v , (∅,∅)) ⊧vf0 ¬φ)}
⟩

By de�nition of ⊧vf0, therefore, all theorems of �rst-order logic and of PAN will get
in (∆1(∅,∅))(w)+; therefore by the monotonicity of ∆ also in I∆(w)+.

qed
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As a corollary,N⌜µ∨¬µ⌝will be valid in the �xed pointI∆ at anyworld, although
µ, as we have seen already, will not be in any �xed point. In addition, also tricky bi-
conditionals such as µ↔ ¬N⌜µ⌝ will be in the �xed point.
We have thus seen that there are ways to overcome the paradoxes of the pred-

icate approach and capture predicative uses of necessity by providing models for
the base language expanded with a predicate for necessity. In the next section we
consider some strategies to formulate deductive systems inspired to the semantic
construction just given.

5 a system for truth and necessity

In this section wemove the �rst steps into combining truth and necessity. We intro-
duce a modal version of Cantini’s VF (Cantini 1990) and prove its soundness with
respect to a modi�cation of the semantics given in the previous section.

5.1 �e theory VF

VF is the theory capturing the properties of a self-applicable (type-free) truth pred-
icate interpreted according to a suitable modi�cation of the operator ∆ introduced
above:

(N, X) ⊧vf φ ∶⇔ ∀S(X ⊆ S ∧ con∗(S)⇒ (N, S) ⊧ φ

Here we have dropped the antiextension and we deal only with consistent candidate
extension: in particular con∗(G(w)) expresses that G(w) does not contain nega-
tions of sentences in F(w); to avoid triviality, only consistent starting evaluations
F(w) are allowed. Let LT be the language L expanded with a unary truth predicate
T. We call the new operator Θ∶P(ω)→ P(ω):

Θ(X) ∶= {φ ∣ (N, X) ⊧vf φ}

By only a slight modi�cations of the arguments already given there, we notice that
Θ is monotone and thus it has �xed points. We de�ne by trans�nite induction

I0Θ ∶= ∅

Iα+1
Θ ∶= Θ(Iα

Θ)

Iλ
Θ ∶= ⋃

β<λ
I

β
Θ

�e minimal �xed point IΘ is simply Iκ
Θ, where κ is the closure ordinal for Θ.

Cantini (1990) introduced a deductive system that is sound with respect to �xed
points of Θ. It is called VF from ‘Van Frassen’, who �rst introduced the supervalua-
tional scheme to analyse vague predicates.
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De�nition 4. VF is formulated in LT. Its axioms are all axioms of PAT (i.e. PA
formulated in LT) and the following:

∀x⃗(T⌜φ( ˙⃗x)⌝→ φ(x⃗)) for all φ ∈ LT(VF1)

∀s, t((T(s=. t)↔ s○ = t○) ∧ (T(s≠. t)↔ s○ ≠ t○))(VF2)

∀x(AxPAT(x)→ Tx)(VF3)

∀v∀x∀t (T x(t/v)→ T∀. vx)(VF4)

∀t(Tt○ → TT. t)(VF5)

∀s(SentLT
(s○) ∧T¬.Tx → T¬. s

○)(VF6)

∀x , y(SentLT
(x→. y)→ (T(x→. y)→ Tx → Ty))(VF7)

∀x(T⌜Tẋ → ¬T¬. ẋ⌝)(VF8)
T⌜Tẋ → SentLT

(ẋ)⌝(VF9)

It is a routine task to check, by induction on the length of the derivation in VF,
that

Proposition 7 (Cantini (1990), Prop. 3.4). If X is a �xed point of Θ, then (N, X) ⊧

VF.

5.2 Modal extensions of VF

To introduce a modal extension of VF, we consider a variant of the strategy adopted
by Stern (2014) to extend the Kripke-Feferman system KF.9

We �rst introduce predicative counterparts of the well-knownmodal principles
(T), (4) and (E) formulated in the language LTN ∶= L ∪ {T} ∪ {N}:

∀x(SentLTN
∧Nx → Tx)(T)

∀t (TN. t → NN. t)(4)
∀t (T¬.N. t → N¬.N. t)(E)

As it is well-known from operator modal logic, (T) forces re�exive frames, (4) tran-
sitive frames, and (E) Euclidean frames. (T) in combination with (E) su�ce to force
frames based on an equivalence relation.
We �nally de�ne the theory MVF.�e theory PATN is, as one might expect,

simply PA formulated in LTN.
9See again Halbach (2014) for a thorough introduction to KF.
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De�nition 5 (Modal VF). MVF is the theory inLTN whose axioms are (i) the axioms
of PATN, (ii) VF formulated in LTN, (iii) the following sentences and rules:

∀t (Nt○ → TN. t)(T-in)

∀v∀x(SentLTN
(∀.vx)→ (∀tNx(t/v)→ N∀.vx))(BF)

∀s, t∀v∀x (SentLTN
(∀.vx)→ (s○ = t○ → (Nx(s/v)↔ Nx(t/v))))(Rig1)

∀s∀t(s○ ≠ t○ → N(s≠. t))(Rig2)

∀x∀y(SentLTN
(x→. y)→ (N(x→. y)→ (Nx → Ny)))(K)

T⌜φ⌝
(Nec)

N⌜φ⌝
for all φ ∈ LTN

It is worth emphasising that the axiom VF3 declaring the truth of all axioms of
PAT now becomes

(8) ∀x(AxPATN(x)→ Tx)

As before, by a straightforward induction, we can conclude that all theorems of
PATN are true. �is includes, for instance, all instances of excluded middle in the
language LTN.
As we have seen in the case of the paradoxes of interaction, eradicating inconsis-

tencies in the multimodal framework is more di�cult than in the unimodal setting.
�erefore we �rst ensure that MVF is consistent by reducing its consistency to the
consistency ofVF.�is will also give an upper bound to the proof-theoretic strength
ofMVF that will be discussed further in the concluding section.�e lower bound is
clear as VF is contained inMVF.

Proposition 8. MFV is consistent, if VF is.

Proof. We de�ne the primitive recursive translation τ∶LTN → LT as follows, using
the remarks at the end of §2:

τ(φ) ∶= φ for φ ∈ L that is, φ arithmetical
τ(T⌜φ⌝) ∶= Tτ. ⌜φ⌝

τ(N⌜φ⌝) ∶= Tτ. ⌜φ⌝

τ commutes with propositional connectives and quanti�ers

In essence, the translation just maps necessity into truth. It is easy to verify that the
translations of all axioms ofMVF are provable in VF. qed
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Cantini (1990) showed that VF proves the same arithmetical sentences as the
theory ID1 of elementary positive inductive de�nitions (see Pohlers (2009)). Propo-
sition 8, therefore, yields the following analysis ofMVF.

Corollary 2. MVF proves the same arithmetical sentences as ID1.

5.3 Semantics and Soundness

Proposition 8 gives us a consistency proof for MVF and indirectly a semantics for
it; in any model of VF we can construct an internal model of MVF.�is does not
mean, however, that there are ‘nice’ models of MVF: in this section we show that
there are ‘standard models’ ofMVF obtained by generalizing in a rather natural way
the intended models of VF.
We now adapt the semantics given in §4.2 to the multimodal framework. Given

a frame F , a model of the language LTN at a world w ∈ W (again we think of
w ∈ W as standard models of L) will be a tripleMw ∶= (w , E(w),NE(w)), where
E∶W → P(ω) is a function assigning to each w an extension of the truth predicate.
From this extension one standardly de�nes an extension of the necessity predicate
NE(w) by taking the intersection of the set of truths at all accessible worlds:

NE(w) ∶= {φ ∈ LTN ∣ ∀v(wRv ⇒ φ ∈ E(v))}

�e set of truths at all accessible worlds will then be de�ned using again the
supervaluational scheme, but this time to de�ne the extension of the truth predi-
cate and not of the necessity predicate directly. Notice now that we can drop the
superscript + or − as we are only assigning candidate extensions and not also an
antiextension to the predicate. As before, let ⪯1 an ordering of the evaluation func-
tions de�ned by: E0 ⪯1 E1 if and only if for all w ∈ W , E0(w) ⊆ E1(w). �erefore
we set, for φ ∈ LTN:

(w , F(w),NF(w)) ⊧vf1 φ ∶⇔

(∀G 1⪰ F)(con∗(G(w))⇒ (w ,G(w),NG(w)) ⊧ φ)

with NX(w) as above. With con∗(G(w))wemean again thatG(w) does not contain
negations of sentences in F(w); as above, to avoid triviality, we consider only consis-
tent starting evaluations F(w). �e operator HF on evaluation functions, relative
to a frame F , is de�ned as

(HF(E))(w) ∶= {φ ∈ LTN ∣ (w , E(w),NE(w)) ⊧vf1 φ}

�e following is an immediate consequence of the de�nitions.
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Lemma 4. �e operator HF is monotone with respect to ⪯1.

As before, monotonicity implies the existence of �xed points, that is evaluations
such that HF(E) = E. In a �xed point of HF(E), therefore, for any φ ∈ LTN, and
any world in F ,

(w , E(w),NE(w)) ⊧vf1 T⌜φ⌝⇔ (∀G 1⪰ E)(con∗(G(w))⇒ (w ,G(w),NG(w)) ⊧ φ)

(9)

(w , E(w),NE(w)) ⊧vf1 N⌜φ⌝⇔ ∀v(wRv ⇒ φ ∈ E(v))
(10)

Closing the empty evaluation function under iterated applications of HF along
an ordinal path, we reach the minimal �xed point of IHF of HF . MVF, however, is
not only sound with respect to the minimal �xed point, but it is satis�ed by all �xed
points of HF .

Proposition9. LetF = (W , R) be a frame and R an equivalence relation. If HF(E) =
E, then (w , E(w),NE(w)) ⊧MVF for any w ∈W.

Proof. For the PATN axioms and the axioms of VF one merely adapts Cantini’s
proof. We consider the genuinely modal axioms ofMVF.

Ad (T). If (w , E(w),NE(w)) ⊧ N⌜φ⌝, then φ ∈ E(v) for all v accessible from w.
By re�exivity, φ ∈ E(w).

Ad (4). Without loss of generality, we can reason about (the code of) a sentence
φ. Let us assume N⌜φ⌝ ∈ E(w).�is entails:

(11) (∀G 1⪰ E)(con∗(G(w))⇒ (w ,G(w),NG(w)) ⊧ N⌜φ⌝)

�erefore, for all extended evaluations G, φ ∈ NG(w), that is

(12) ∀v(wRv ⇒ φ ∈ G(v))

Now assume (w , E(w),NE(w)) ⊧ ¬NN. ⌜φ⌝.�ere is then a v with wRv and N⌜φ⌝ ∉

E(v), that is

(13) ∃v(wRv ∧ (∃G 1⪰ E)(con∗(G(v)) ∧ (v ,G(v),NG(v)) ⊧ ¬N⌜φ⌝)

By iterating the same reasoning for NG(v), we �nd

(14) ∃v0(vRv0 ∧ φ ∉ G(v0))

By transitivity, (14) contradicts (12).
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�e reasoning for (E) is similar to the previous case. So we consider (T-in). If
t○ ∈ NE(w), then t○ ∈ E(v) for all v accessible from w. If Nt ∉ E(w), then

(15) (∃G 1⪰ E)(con∗(G(w)) ∧ (w ,G(w),NG(w)) ⊭ Nt)

Again we arrive at

(16) ∃v(wRv ∧ t○ ∉ G(v))

But (16) contradicts G 1⪰ E and t○ ∈ E(v).

We conclude the proof by considering the case of (K). Let us assume φ → ψ ∈

NE(w) and φ ∈ NE(w); that is

(17) ∀v(wRv ⇒ φ → ψ ∈ E(v) ∧ φ ∈ E(v))

�e de�nition of classical satisfaction yields the desired result. qed

In the following, concluding section we elaborate on the results just presented
and on the possibility of further work.

6 conclusion

In the introduction we sketched a project: the formulation of natural systems of
interacting modalities extending a some trustworthy theory of modal ascriptions.
�e ‘naturality’ criterion imposed on the project has been spelled out in terms of a
possibleworlds semantics formodal predicates. Wehave seen that this is a nontrivial
matter; paradoxes threaten our predicative uses ofmodal notions and impose severe
restrictions to the space of models of the corresponding languages.
Despite these di�culties, we formulated a system of truth and necessity MVF

that adapts themotivation behindCantini’sVF to the new language and that is sound
with respect to a rather natural semantics for truth and necessity. In §1 we have
recalled Sergio Galvan’s idea of a hierarchy of theories that are capable of making
explicit our trust in the theories lower down, starting with our preferred theory of
the bearers of modal ascriptions (e.g. PATN). By Proposition 8,MVF will prove the
same arithmetical sentences as ID1: to give an idea of how this relates to what we
called Galvan’s hierarchy, we notice that, for instance, the results of iterating ACA
for all ordinals < Γ0, the so-called Feferman-Schütte ordinal, is reducible to ID1.
Re�ecting on the fact that ACAwas already su�cient to formalize themetatheoretic
soundness proof for PA, this gives us an idea of how farMVF takes us.

�ere are however, also some limitations to the success of the strategy of com-
bining modalities. In the �rst place it does not seem to be possible to achieve a
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full adequacy result forMVF, exactly as in the case of VF. More precisely, Fischer et
alii (2015) have proposed the following criterion of adequacy for systems of truth: a
system T is ω-categorical if

(18) (N, S) ⊧ T⇔ S ∈M

whereM is a class of acceptable interpretations of the truth predicate given by some
semantic theory of truth. Proposition 7 tells us that the right-to-le� direction holds
for VF. Fischer et alii (2015), by adapting a previous result of Philip Welch, show in
fact that the le�-to-right direction of (18) cannot be achieved ifM is the class of su-
pervaluational �xed-points: in nuce, the property of being a supervaluational �xed
point is Π11-complete, if (18) held, we would have a Σ11-de�nition of a supervalua-
tional �xed point. �is shows also that such categoricity result cannot be achieved
forMVF.
In addition, we know already that Proposition 8 shows that the proof-theoretic

strength of MVF does not exceed the one of VF.�is is in some sense good news;
at the conceptual level we might even welcome the fact that the notion of necessity
axiomatized by MVF is in continuity with the corresponding notion of truth and
allows for a ‘collapse’ of necessity into truth in the one world reading. However, it is
also true that the interaction of truth andnecessity enriches our expressive capability
and we would like our modal theory to exceed the strength of the truth theory on
which it is based.

�ese drawbacks of the strategy proposed in this papermay be nonetheless good
guiding principles for adopting di�erent strategies to combine truth and necessity:
one might for instance follow McGee (1991) and Halbach (2001) and consider ne-
cessity as provability in a suitable system. We defer a treatment of this option to fur-
ther work, but it will most likely lead to a considerable increase in proof-theoretic
strength.
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