
THE IMPLICIT COMMITMENT FOR ARITHMETICAL THEORIES AND ITS
SEMANTIC CORE

Abstract. According to the implicit commitment thesis, once accepting a mathematical for-
mal system S, one is implicitly committed to additional resources not immediately available
in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are
bound to accept re�ection principles for S and therefore claims in the language of S that are
not derivable in S itself. It has recently become clear, however, that such reading of the implicit
commitment thesis cannot be compatible with well-established positions in the foundation of
mathematics which consider a speci�c theory S as self-justifying and doubt the legitimacy of
any principle that is not derivable S: examples are Tait’s �nitism and the role played in it by
Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic, Nelson’s ultra�nitism
and sub-exponential arithmetical systems. This casts doubts on the very adequacy of the im-
plicit commitment thesis for arithmetical theories. In the paper we show that such foundational
standpoints are nonetheless compatible with the implicit commitment thesis. We also show that
they can even be compatible with genuine soundness extensions of S with suitable form of re-
�ection. The analysis we propose is as follows: when accepting of system S, we are bound to
accept a �xed set of principles extending S and expressing minimal soundness requirements
for S, such as the fact that the non-logical axioms of S are true. We call this invariant com-
ponent the semantic core of implicit commitment. But there is also a variable component of
implicit commitment that crucially depends on the justi�cation given for our acceptance of S
in which, for instance, may or may not appear classical re�ection principles for S. We claim
that the proposed framework regulates in a natural and uniform way our acceptance of di�erent
arithmetical theories.

1. Preamble

The acceptance of a system formalizing some portion of mathematics is the outcome of a com-

plex justi�catory process that is constrained by philosophical and ontological attitudes, in�u-

enced by pragmatical considerations (fruitfulness, generality), and also hospitable to aesthet-

ical ones (simplicity, elegance). The acceptance of a formal system S, therefore, encompasses

the possibility that some of the components of this justi�catory process are not expressible or

even formalizable in the language of S and that some crucial constituents of this acceptance

are only left implicit by the process itself. Examples abound: just to remain on the formal side,

for instance, soundness assertions for S involving the notion of truth are not expressible in the

language of S, while most of their truth-free surrogates are not provable in S.
1
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We have come to the core idea underlying the notion of implicit commitment: when accept-

ing a theory S, we are also bound to embrace a cluster of formal or semi-formal assertions that

are not immediately available in S itself.1 Historically, the notion of implicit commitment for

formal systems of arithmetic, and for mathematical theories more in general, emerged in the

work of logicians and philosophers already in the 50’s and 60’s of the last century. Their main

concern is clearly expressed in a later work by Solomon Feferman:

To what extent can mathematical thought be analyzed in formal terms? Gödel’s
theorems show the inadequacy of single formal systems for this purpose, except
in relatively restricted parts of mathematics. However at the same time they
point to the possibility of systematically generating larger and larger systems
whose acceptability is implicit in acceptance of the starting theory. The engines
for that purpose are what have come to be called re�ection principles [12, p. 1].

The articulation of this version of implicit commitment was crucial for the analysis of predica-

tivism and, in particular, for the identi�cation of predicatively de�nable sets of natural num-

bers.2 In one well-known Feferman’s formulation, the limit for the generation of such sets

is articulated in terms of iterations of uniform re�ection principles and predicative compre-

hension over Peano Arithmetic (see [10, 11, 30]). This project was re�ned and reshaped several

times by Feferman in the past decades, moving from iterations of rami�ed analysis [11] to more

succinct formulations such as the re�ective closure of the starting theory involving a primitive

notion of truth (see §3-4).

At any rate, no matter what formulation of Feferman’s hierarchy of systems one chooses,

the resulting picture of implicit commitment will entail that in accepting a starting theory S

one is committed to statements that are not provable in S itself. Nevertheless, as we shall

see later in the paper, it has recently become clear that the inclusion of re�ection principles

for the starting theory among the claims we are implicitly committed to when accepting it,

although integral part of Feferman’s foundational program, may clash with other philosophical

standpoints. Therefore, we opt for a more neutral and more general formulation of the implicit

commitment thesis:
1In what follows, we will always deal with systems S formulated in a language LS extending the language of
arithmetic L = {0, S,+,×,≤}.
2For an overview of this debate, see [13].
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(ICT) In accepting a formal systems S one is also committed to additional re-
sources not available in the starting theory S but whose acceptance is implicit
in the acceptance of S.3

As it is formulated, (ICT) has the advantage of re�ecting many instances of disagreement in the

existing literature over what these ‘additional resources’ should amount to. Several authors,

following Feferman, allow for conceptual resources that are not immediately available in S

due to familiar Gödelian phenomena, such as consistency statements and re�ection principles.

Some of these authors go even further and argue that, once soundness extensions of S are

admitted, they should be formulated by explicitly resorting to a notion of truth and not merely

by implicitly referring to it via schemata [12, 46, 26, 5]. Other authors maintain instead that

whatever we are committed to when endorsing the system S should already be expressible in

the very language of S [49]. And �nally, proponents of a more drastic view, like Jean-Yves

Girard, even deny that re�ection on our acceptance of S may have any epistemological value

because it relies on a pre-existing agreement on what axioms and rules should be believed to

be true [19].

It’s important to notice, nonetheless, that the positions just sketched are extracted from

works that are not directly concerned with a clari�cation of the notion of implicit commitment,

but mainly with the notion of truth in the context of truth-theoretic de�ationism.4 A direct

analysis of the notion of implicit commitment, however, is much needed. As Horsten and

Leigh put it:

philosophers of mathematics have hitherto largely failed to investigate the no-
tion of implicit commitment, and have not spent much philosophical energy
on analysing our warrant for re�ection principles [23, p. 32].

Recently Walter Dean has claimed that what is traditionally taken as part of the principles

we are committed to when accepting a system S — such as re�ection principles — may clash

with the justi�cation provided for the acceptance of S itself [6]. In particular, he focuses on

3A similar formulation can be found in [6, p. 32].
4Girard and Feferman are obvious exceptions, although they also do not directly deal with conceptual analysis of
the notion of implicit commitment.
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the well-known theses by William Tait and Daniel Isaacson, according to which �nitary math-

ematics coincides with what can be proved in Primitive Recursive Arithmetic (PRA) and �rst

order Peano Arithmetic (PA) respectively. Dean observes that both theses can be understood as

suggesting that PRA and PA are epistemically stable, “in the sense that there exists a coherent

rationale for accepting [these systems] which does not entail or otherwise oblige a theorist to

accept statements which cannot be derived from [their] axioms"[6, p. 53]. Although we are

not primarily interested in analyzing the notion of epistemic stability introduced by Dean, we

will be concerned with some of its e�ects: the predicativist à la Feferman and the �rst-orderist

à la Isaacson – who takes PA to delimit the boundaries of �nite mathematics, although both

assigning a privileged status to Peano Arithmetic, will do so on di�erent grounds and this will

heavily a�ect their stance on (ICT). For Feferman there will be a recognizable set of statements

that are not derivable in PA, while being part of our implicit commitment to it; for Isaacson, by

contrast, the additional resources hinted at in (ICT) will likely be non-existent. This determines

a form of relativity of implicit commitment with respect to the acceptance of one’s preferred

arithmetical system that will be a recurring theme of this paper.

In what follows, we propose an alternative analysis of the notion of implicit commitment for

arithmetical theories. On our account, implicit commitment exhibits a variable and invariant

component. We maintain, with Dean, that the set of principles de�ning the implicit commit-

ment with respect to the acceptance of a theory S is relative to the justi�cation given for this

very acceptance. However, we also argue — contra Dean – that the acceptance of a system

does involve an explicit soundness extension in the form of a �xed set of semantic principles,

which we call ‘semantic core’. The relative aspect of implicit commitment thus takes the form

of di�erent, possible extensions of this ubiquitous core. In other words, we will claim that there

is a fundamental body of ‘re�ection’ principles formulated through the notion of truth — such

as the claim that all non-logical axioms of the accepted theory S are true — that are part of

the implicit commitment relative to any reasonable justi�cation o�ered for the acceptance of

a theory S. What extends such a kernel is variable and constrained by the justi�cation given

by the idealized mathematician.
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Here is a sketch of the structure of the paper. In the next section, we brie�y discuss Dean’s

critical analysis of (ICT) in relation to Tait’s and Isaacson’s theses and we extend his remarks

to Nelson’s ultra�nitism. We claim that Dean’s analysis does not lead to a dismissal of (ICT)

but rather to an alternative interpretation of it. In section 3, in fact, we introduce the necessary

toolbox to take up this possible interpretation of (ICT), whereby the ‘additional resources’ we

are committed to when accepting a system S do not entail statements that are unprovable in S.

Our aim is to isolate the semantic core of an arithmetical theory, amounting to the �xed, invari-

able component of our commitment to it. In section 4 we defend the thesis that the distinction

between semantic core and variable components of implicit commitment resolves the tension

between Tait’s and Isaacson’s theses and (ICT); in addition, we show that the resulting picture

of implicit commitment is also compatible with the traditional reading of (ICT) associated with

positions such as Feferman’s. Section 5 contains some concluding remarks.

2. Implicit commitment and foundational theses

As we mentioned in the previous section, Dean in [6] examines the way in which Tait and

Isaacson respectively justify the acceptance of PRA and PA from a ‘�nitist’ and a ‘�rst-orderist’

perspective. In both cases he concludes that (ICT) is incompatible with the justi�cation that

they give for the acceptance of the theories. Let us now brie�y recall Tait’s and Isaacson’s

theses and how Dean employs them to criticize this strong reading of (ICT).

On the view articulated by Tait, the formal system of PRA captures precisely the �nitist

portion of mathematics.5 Inasmuch as the ‘�nitist portion of mathematics’ is not itself a math-

ematical notion, Tait draws an analogy between his thesis and Church’s thesis, suggesting that

‘any plausible attempt to construct a �nitist function that is not primitive recursive either fails

to be �nitist [. . . ] or else turns out to be primitive recursive after all’ [48, p. 533, p. 537]. In

accordance with the spirit of Hilbert’s program, Tait then investigates what counts as �nitistic

5In the literature one can �nd many formal systems that fall under the label PRA. In the following we refer to PRA as
the extension of propositional logic with the de�ning equations of all primitive recursive functions and the schema
of quanti�er-free induction – for a precise de�nition, see for instance [50, Ch. 4, §5].
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proof of an open formula ϕ(~x) of the language of PRA, and concludes that its proofs are pre-

cisely the formal proofs of ϕ(~x) in PRA. Tait’s proof principles involve only a limited form of

induction for �nitistically acceptable types (cf. [48, p. 537]), much closer to primitive recursion

than to the �rst-order schema of induction.6 In fact, already the schema of induction for Σ2-

formulas, let alone the full schema of induction, would enable one to de�ne recursive but not

primitive recursive operations such as the Ackermann function. Such instances of induction

are therefore not available to the �nitist.

To discuss the consequences of accepting (ICT) for the �nitist à la Tait, we move from the

quanti�er-free language to a more comfortable base theory formulated in the �rst-order lan-

guage of arithmetic. As Dean emphasizes, Kalmar Elementary Arithmetic (EA) (cf. [2]) is a good

choice because (i) it enjoys a smooth arithmetization of the syntax and (ii) it is a proper sub-

theory of the conservative extension of PRA in which we allow for full-predicate logic but still

quanti�er-free induction.7 Let us then consider the so-called uniform re�ection principle for an

elementary theory S, namely the claim

RFN(S) ∀x (PrS(pφ(ẋ)q)→ φ(x))

for φ(v) a formula of LS with only v free, where PrS(pφ(ẋ)q) canonically expresses that the

result of formally substituting the variable v with the numeral for x in φ(v) — formally the

LS-term sub(pϕq, pvq, num(x)) — is provable in S. The following is well-known:

Proposition 1 ([31]). Over EA, full induction is equivalent to RFN(EA).

Therefore, if one understands (ICT) as including RFN(EA), then the �nitist should also be com-

mitted to the very induction principle of PA, which clearly isn’t available in the �nitist’s pre-

ferred theory PRA – nor obviously in its �rst-order variant QF-IA. Dean thus concludes that

the �nitist à la Tait cannot include RFN(EA) (and a fortiori RFN(PRA)) into the set of principles

6The �nitistic justi�cation process for PRA sketched by Tait is rooted in the fundamental operation of manipulating
�nite sequences of objects. All operations and notions obtained by bootstrapping this operation are �nistically
kosher. In particular, this process of justi�cation is not itself legitimate for the �nitist because it assumes the
general notion of function, which is not �nitistically de�nable (cf., e.g., [48, pp. 531-533]).
7This theory is called QF-IA in [47].
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she is implicitly committed to when embracing PRA. If principles such as RFN(PRA) are taken

to be, as in Feferman’s own reading, necessary for (ICT), then (ICT) is simply an inadequate ac-

count of implicit commitment across reasonable arithmetical systems. This is basically Dean’s

conclusion.

Such conclusion is based on the presuppositions that (ICT) can only be interpreted along the

lines of Feferman’s own account of it and, as a consequence, the reference to ‘resources not

available in S’ in the formulation of (ICT) could only be read in terms of assertions that imply,

or even that are equivalent, to sentences in the language of S that are not provable in it. As we

shall see later on, however, our proposal will rest indeed on refuting such presupposition; there

are in fact many senses in which a resource not available in S may fail to entail unprovable

sentences in S. Indeed, the lesson that we draw from Dean’s point is not that (ICT) has to

be rejected given the incompatibility of the �nitist’s justi�cation of PRA and RFN(PRA). On

the contrary, Dean’s objection points at the possibility of embracing a plausible version of

(ICT) that – relative to certain restrictive standpoints such as the �nitist’s – does not invoke

principles equivalent to or stronger than RFN(EA). Such a version of (ICT) will be articulated

in the following sections.

Dean draws a similar conclusion in relation to Isaacson’s thesis, according to which PA cap-

tures “an intrinsic, conceptually well-de�ned region of arithmetical truth” [24, p. 203]. Indeed,

Isaacson suggests that PA may be regarded as sound and complete with respect to a conception

of arithmetical truths as “directly perceivable” by articulating “our grasp of the structure of the

natural numbers” [24, p.217], [25]. Unprovable truths in PA such as Goodstein theorem and the

Paris-Harrington sentence are ones that involve hidden higher-order (or in�nitary) concepts.8

If these claims have a clear mathematical meaning, however, it is also well-known that they

are equivalent, over PA, to claims of apparent meta-mathematical meaning such as the Gödel

sentence for PA or a canonical consistency statement Con(PA).

8Note that Isaacson characterization of arithmetical truth seems to entail that sentences like the Goldbach con-
jecture are un-arithmetical, being neither directly perceivable by grasping the structure of natural number, nor
perceivable from some arithmetical truth [1]. Against the claim that a proof of any true PA sentence which is
independent of PA needs ideas that go beyond those that are required in understanding PA, see [42].
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A similar correspondence between the mathematical and the meta-mathematical can be

found at the level of the principles which are usually involved in strong readings of (ICT) such

as Feferman’s. Let’s consider again RFN(PA). It is a classical result by Gentzen that PA proves

trans�nite induction up to any ordinal smaller than ε0 (henceforth TIωn ) – i.e. up to the limit

of all ordinals of the form ωω . .
.
ω

for towers of order n [18]. Hence, by the properties of for-

mal provability, PA proves the formalization of this fact for all n. By RFN(PA), therefore, one

can conclude, within PA+RFN(PA), the claim that for all n, TIωn , that is the schema of trans�-

nite induction up to ε0 (TIε0 ). Also the other direction — that is the claim that PA + RFN(PA)

proves TIε0 — is well-known, although the proof, which can be found in [31], is de�nitely more

involved.

As a consequence, a principle that is naturally justi�ed by appealing to semantic or meta-

mathematical considerations such as RFN(PA) on the one hand, and a principle concerning

how many countable trans�nite ordinals can be well-ordered on the other, are equivalent over

PA. Therefore, if Isaacson’s thesis on PA is to be understood in a radical way as to entail that

anything that is unprovable in PA should not be part of the principles allowed by (ICT), both

RFN(PA) and TIε0 should be ruled out. In a less categorical reading of Isaacson’s thesis, one

may still think that principles that are not provable in PA may be allowed in the set speci�ed

by (ICT); however, as stressed by Dean himself, these truths should now assume the instru-

mental role of con�rming the theorems of PA as clear boundaries for �nite mathematics (see

[24, §3]).9 However, it is not clear to us in which sense this more liberal reading of (ICT) should

di�er from the radical one, since the inclusion of these additional arithmetical truths in the

set speci�ed by (ICT) only rea�rms and does not characterize PA as a self-standing portion

of mathematical truth. The message that Dean extracts from Isaacson’s thesis looks, again,

9It should be noticed that we haven’t made any reference to the notions of ‘higher-order’ or ‘in�nitary’ in this
description, and this is not by accident: it is not completely clear to us, indeed, where the boundary between
�nitary and in�nitary should lie in the case of PA. Isaacson seems to think that such a boundary coincides with the
distinction between what can be proved or not in PA: but can there be a sense in which ‘higher-order’ or ‘in�nitary’
notions are not at odds with PA? To cite one simple example, consider well-orderings of order type α < ε0, that can
be proved in PA by a well-known theorem of Gentzen; other examples that come to mind are versions of semantical
re�ection that, unlike RFN(PA), are conservative over PA and therefore do not lead us outside of the realm of what
is acceptable by the ‘�rst-orderist’. The next section will present and discuss examples of semantical re�ection of
this sort.
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uncontroversial: if one endorses it, she is also committed to a reading of (ICT) that eschews

claims that are unprovable in PA, casting serious doubts on the plausibility of (ICT) itself. And

again, we will see in the next section that there are senses in which the ‘resources not available

in PA’ we might be implicitly committed to when accepting PA may fail to imply statements

that are unprovable in PA itself.

In addition to the cases examined by Dean, similar questions arise in analogous founda-

tional theses that rely on a restriction of the full induction schema of PA. For instance, one

might look at the ultra�nist thesis advocated by Edward Nelson in [37], and echoed in several

commentator’s works, according to which one should mistrust the assumption of the totality of

exponentiation.10 A theory that fully meets Nelson’s standards is the theory S12 from [3, 4]. S12
has several further advantages: besides being consistent with the negation of exponentiation,

S12 is also remarkable from a purely proof-theoretic point of view: it can be seen as improving

on EA as a theory for formalizing in a natural way the syntax of �rst-order theories as it is

commonly done for the incompleteness theorems and as it is required for formulating re�ec-

tion principles and semantic extensions of our starting theories. These notions are in fact all

p-time and the functions Σ1-de�nable in S12 coincide with the p-time computable functions. S12
is formulated in L∗ = L∪{0,S,+,×, | · |,#, b12 ·c}, where | · | is the length function that gives

the number of symbols in the binary representation of the input, # is such that x#y = 2|x|×|y|

and b12 ·c gives the lower integer part of x
2 . Its axioms are the de�ning equation of these symbols

and the schema

(PIND) ϕ(0) ∧ ∀x (ϕ(b12xc)→ ϕ(x))→ ∀xϕ(x)

for ϕ in the class Σb
1, which is similar to the usual class Σ1 formulas with the additional as-

sumption that quanti�ers in the formula have to be bounded by a term of the form |t|, except

10In particular, Nelson sketches in [37, Ch 31] a foundational program under the assumption of the negation of
the totality of exponentiation. Admittedly, much less clear are the reasons why Nelson advocates such position.
Besides his clear nominalistic stance (cf. [37, Ch. 18], Nelson’s position can be taken to hold that

. . . the basic informal argument says, roughly, that the number of steps needed to terminate a
recursion de�ning exponentiation is of the order of magnitude of exponentiation itself – a per-
ceived circularity. [14, p. 2]
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the outermost string of existential quanti�ers that can be bounded by an arbitrary term. Cru-

cially, S12 is interpretable in Robinson arithmetic Q, witnessing its minimality, and is �nitely

axiomatizable [21, Ch. V].

Assuming therefore that S12 is ultra�nitistically-acceptable, let us consider a re�ection prin-

ciple of the form

∀x (Pr∅(pϕ(ẋ)q)→ ϕ(x))RFN(∅)

where Pr∅(pϕ(ẋ)q) expresses the fact that an arbitrary numeral instance of the formula ϕ is

provable in �rst-order predicate logic. It’s important to notice that now, for the formalization

of provability in S12, instead of non standard numerals one has to consider but dyadic numerals

whose formalization is polynomially bounded.11 However, even under these minimal assump-

tions, we obtain a result similar to Proposition 1.

Proposition 2. PA is a subtheory of S12+RFN(∅)

Proof Sketch. It is clear that, for each m ∈ ω,

(1) ϕ(0̄) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))→ ϕ(m̄)

is provable in �rst-order logic by a series of modus ponens and universal instantiations starting

from ϕ(0̄). This proof, however, may not be captured in general by S12. Therefore we argue as

follows: assuming that ϕ is provably progressive in S12 — that is, S12 proves that it holds for 0

and that, if it holds for x, it holds for x + 1 as well —, by employing Solovay’s shortening of

cuts technique (cf. again [21, Ch. V]), we downwards close ϕ under ≤ so that the resulting

formula de�nes an initial segment of the S12-numbers J . We can safely assume J to be closed

under multiplication and the function #.

11 Dyadic numerals are de�ned as

2× n = (SS0)× n 2× n+ 1 = S((SS0)× n)
The codes of the numeral n, in this way, is of order nc for a �xed c – therefore can be handled with # – and not
2cn for �xed c, which would require exponentiation.
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Then we can prove that

(2) S12 ` ∀xPrS12pJ (ẋ)q

(2) by crucially considering dyadic numerals.

Now reasoning in S12 and starting with the proof of J (0), we can reason as usual to obtain

a proof of J (n). Therefore, in S12, which can be expressed as a single sentence A, plus RFN(∅),

∀xPr∅(pA→ J (ẋ)q)

J (x) by A and RFN(∅)

J (x)→ ϕ(x) by def. of J

∀xϕ(x) logic

�

Proposition 2 strengthens the conclusion that, if one reads (ICT) as referring to ‘resources not

available in S’ that entail claims that are not provable in S, then S cannot be taken to capture a

self-standing, self-justifying portion of mathematical reality. The ultra�nitst embracing S12, in

fact, cannot even be committed to a re�ection principle for logic, on the pain of the acceptance

of the full induction schema ofPA that, obviously, also entails the claim that the exponentiation

function is total.

To summarize, the discussion of the theses of Tait, Isaacson, and Nelson, coupled with a

strong reading of (ICT) à la Feferman that seems to be taken for granted by Dean, leads to

at least two options: either we reject (ICT) across the board, deeming it as inadequate, or we

provide a di�erent interpretation of (ICT) equipped with an alternative reading of what the

‘resources not available’ in the chosen system could amount to. In the next section we set the

basis for such an alternative interpretation: we will introduce in particular a wide array of

semantical extensions of an arithmetical system S that, although crucially resorting to notions

that are not immediately available in S — such as a truth predicate — do not entail sentences

in the language of S that are not provable in S itself.
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3. Soundness extensions and the semantic core

As noticed by several authors,12 resorting to schemata such as RFN(S) above may be plausibly

seen as a surrogate for single sentences of the form

GRP(S) ∀x (PrS(x)→ Tx)

where T is unary truth predicate. These surrogates only become necessary when a notion

of truth is not part of the signature of the theory. Any soundness claim seems in fact to be

intrinsically related to the notion of truth. If one wants to express in the object language that

all non-logical axioms of S are true, for instance, one can of course resort to a schema of the

form

AxS(pϕq)→ ϕ

where AxS(·) is the representation of all non-logical axioms of S. Yet, this option merely

highlights the fact that we are relegating the notion of truth in the meta-theory.

Clearly someone might have independent motivations to stick with the expressive limita-

tions of the arithmetical language in asserting the soundness of a theory. Tennant in [49], for

example, has made use of the well-known fact that schematic versions of re�ection, such as

RFN(S), enable us to go beyond what’s provable in S to defend the possibility of a de�ationary

account of the notion of truth employed in these soundness claims. However, Tennant does not

fully articulate a justi�cation for these principles, although he hints at the schematic version

of re�ection as su�cient for �xing the norms for assertion of these soundness claims [49, p.

574]. More generally, while it is uncontroversial a soundness extension of S will contain forms

of re�ection such as RFN(S), it remains problematic whether the presence of RFN(S) is su�-

cient for de�ning a soundness extension, in the sense that its principles amount to a coherent

articulation of the concepts needed to state soundness claims for S. A good illustration of how

soundness claims can be derived within an adequate framework for provability and truth is

12Cf. for instance, [31], [20, p. 309].
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provided by Feferman’s re�ective closure of PA (Ref(S)), nowadays commonly known as KF

from ‘Kripke-Feferman’13:

Which statements in the base language L of S [. . . ] ought to be accepted if one
has accepted the basic axioms and rules ofS? The answer is given as an ordinary
theory Ref(S) formulated in a languageL(T, F ) [. . . ] where T andF are partial
truth and falsity predicates which are self-applicable in the sense that they apply
to (codes of) statements of L(T, F ) [. . . ] Thus, for example, we may reason in
Ref(PA) by induction about the truth of statements which contain the notion
of truth, and so arrive at statements of the form: ∀x[ProvPA(x) → T (x)],
and by repeating this kind of argument derive iterated re�ection principles for
arithmetic [12, p. 2].

Note well that we are not suggesting the impossibility of convincing arguments supporting

the absence of the notion of truth from soundness extensions of a given theory; we are simply

holding that given the usual way of introducing and justifying soundness claims for a theory

S, the notion of truth is hard to do without. Proposals such as Tennant’s, and the subsequent

debate it generated [27, 5, 41], clearly show how hard it is to eradicate the intuition that re-

�ection principles are conceptually dependent on the notion of truth. But the onus is on those

who do not share this intuition to tell a principled story about soundness claims by resorting

to surrogates that can play the role of semantic notions. It’s hard to say what this story could

amount to. Thus, throughout the paper we will stick with the widespread view and hold that

soundness claims are best formulated by employing a notion of truth governed by suitable

axioms.

However, this does not immediately mean that these axioms added on top of S need to entail

GRP(S). Such a requirement, indeed, would be too strong for an arbitrary S (namely, when

S also varies over, for instance, theories with restricted induction). The case made by Tait for

PRA from the �nitist point of view is indeed one example where one needs to be careful in

calibrating the strength of the principles for the truth predicate. Similar considerations apply

to Isaacson’s thesis on PA and ultra�nitist’s position viewed through the lens of S12. Prima facie,

there is not much room for the choice of the truth principles: for instance, the next proposition

13See footnote 22 for a precise de�nition of KF.
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shows that already weak truth axioms seem to collapse the �ne structure of the subsystems of

PA.

Proposition 3. The result of extending S12 — whose language is expanded with a fresh predicate

T — with the schema14

(utb) ∀x (T pϕ(ẋ)q ↔ ϕ(x))

for all L-formulas ϕ(v) derives the full induction schema of L.

Proof. Since S12 in LT := L∪ {T} contains I∆0 in LT, the following is derivable in the former

(3) Tpϕ(0)q ∧ ∀x (Tpϕ(ẋ)q→ Tpϕ( ˙x+ 1)q)→ ∀xTpϕ(ẋ)q

for a formula ϕ(v) of L of arbitrary complexity, because Tpϕ(ẋ)q is a ∆0-formula of LT. By

employing (utb), (3) yields the desired result. �

The argument employed in Proposition 3 applies equally well — with the obvious modi�ca-

tions — to other subsystems of PA obtained by restricting induction such as EA, PRA, of IΣn for

every n.15 At any rate, Proposition 3 seems to slim our chances of �nding a reasonable truth-

theoretic extension of an arbitrary arithmetical theory S, that is �xing a set of reasonable truth

axioms that are compatible with the principles we are implicitly committed to when we en-

dorse S. Proposition 2 and Kreisel and Levy’s result already told us that a soundness extension

involving the uniform re�ection principle for S may clash with the foundational standpoints

— such as the ones just discussed in the previous section — advocating a restriction of the

full schema of induction of PA. Proposition 3 extends these limitations to the truth-theoretic

context: if even weak axioms such as (utb) are su�cient to lead us from, S12, EA, or PRA to

full PA, then there seems to be no hope to harmonize (ICT) and foundational positions that

do not permit arithmetical consequences exceeding those of the systems associated with such

positions.

14Recall the slight shift in meaning of the numerals (cf. footnote 11).
15A similar argument would even hold in the case of set theories formulated by syntactically restricting schemata.
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Nevertheless, concluding this would simply be trading on a confusion on the meaning of

‘truth axiom’. The theory of truth employed in Proposition 3 is obtained by extending the

mathematical induction schemata of the base theory to the truth predicate. If the axioms (utb)

are unequivocally truth-theoretic in character, it is natural to think of the extended induction

as a mathematical and not as a truth-theoretic axiom. There seems to be in fact a substantial

di�erence between metalinguistic principles declaring the truth conditions for a sentence of L,

as (utb) seems to be (partially) doing, and the extension to the truth predicate of a schema whose

justi�cation is apparently non-metalinguistic. As observed by Hartry Field, such a justi�cation

essentially depends on a ‘fact about natural numbers, namely, that they are linearly ordered

with each element having �nitely many predecessors’[15, p. 538].

For example, the formula Tp0 = 0q ∧ 2x > x can occur into instances of the induction

schema of EA formulated in LT (:= L ∪ {2·,T}); however, it would be rather implausible to

consider the corresponding instance of induction as a genuinely truth-theoretic sentence. By

contrast, the truth predicate in it is merely idling and the bulk of the induction is instead a basic

mathematical property of the exponential function. On the contrary, the induction instance

corresponding to the LT-formula Tp2ẋ > ẋq is expressing a metalinguistic fact, namely that

all substitutional instances of the formula 2x > x are true. The shift in meaning between the

two properties is subtle but crucial: in one case we talk about properties of a mathematical

function, in the second one about formulas of L.

Let’s be clear about this point to avoid further confusion: from the internal point of view

of the theory of truth, the two instances of induction corresponding to the formulas Tp0 =

0q ∧ 2x > x and Tp2ẋ > ẋq are, strictly speaking, indistinguishable. However, from the

external point of view of our informal metamathematical practice, they are clearly distinct. It

is only because arithmetic plays a double role of theory of syntax and of object theory, that we

can consider both instances as belonging to essentially the same class. This observation even

led to the formulation of theories of truth that keep separate the domain of syntactic objects

from the mathematical or, more generally, the object theoretic universe (see [20, 22, 38]). It’s not

our intention here to consider the details of this alternative framework: we will keep implicit
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the distinction between metalinguistic and object-linguistic instances of the induction schema.

However, in what follows we will not extend the induction schema of S to the truth predicate

to avoid any con�ation between the two levels.

This is not to say, however, that we will not be able to state the truth of the induction

schemata of S: if in fact the extended induction schema in combination with natural truth

axioms would lead us to very strong theories, the assumption of the truth of all its instances

is fairly innocent. As we shall see shortly, indeed, the result of adding to a wide class of base

theories S the claim ‘all instances of the induction schema of S are true’ is still compatible with

the alternative reading of (ICT) that we suggested in the previous section and that is aimed at

harmonizing (ICT) with foundational standpoints such as Tait’s, Isaacson’s and Nelson’s.

3.1. The semantic core. We have seen that a strong reading of (ICT) may con�ict with foun-

dational standpoints based on a form of ‘arithmetical completeness’ or ‘epistemic stability’ of

some arithmetical system S. In fact, if (ICT) entails re�ection principles for S and therefore

claims in the arithmetical language that are not provable in S alone, then in accepting S one is

also bound to accept arithmetical consequences that go beyond S, thus contradicting its alleged

completeness.

In concluding §2, we envisaged the possibility of an alternative reading of (ICT) that could

be immune from this problem. But how could this alternative reading look like? A hasty

thought may be to let (ICT) depend exclusively on one’s foundational standpoint. This is highly

problematic. Let’s consider, for example, someone who embraces only what’s derivable or in-

terpretable in PA: by a well-known result of Feferman, she will also accept ¬Con(PA).16 By

contrast, we have seen that there are several authors disposed to accept Con(PA) after accept-

ing PA. Under this relativistic view of (ICT), therefore, di�erent readings of it would not only

lead to alternative sets of principles, but rather to sets of principles inconsistent with each

other. In the speci�c case of ¬Con(PA) just mentioned, moreover, there is a clear departure

from what we previously defended as a necessary condition for any plausible reading of (ICT),

namely the truth of the principles at play. The interpretation of (ICT) that we now introduce

16See [9].
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will keep a strong link with the notion of truth, while rejecting the sort of rigidity detected

in Feferman’s reading of (ICT). Our approach substantiates a dynamic reading of (ICT) as dis-

playing a �xed, semantic component — called the semantic core of implicit commitment — and

a variable component that is relative to one’s foundational standpoint.

The semantic core amounts to a set of principles of meta-theoretic nature that enable us to

re�ect in a natural and uniform way on our acceptance of di�erent arithmetical theories. To

introduce it, we argue in three stages. In the �rst step, we need to expand the language of S

with semantic resources, a truth predicate T in particular, and characterize it with a minimal

set of principles capturing its disquotational nature. More precisely, given a suitable S, the

theory TB[S] is obtained by expanding LS with the predicate T and extending its axioms with

the schema

(tb) Tpϕq ↔ ϕ

for all LS-sentences ϕ. An immediate consequence of (tb) is the truth of each axiom of S;

it is clear therefore that if S has �nitely many non-logical axioms, (tb) su�ces to conclude

∀x (AxS(x)→ Tx), that is the single sentence expressing the truth of all (non-logical) axioms

of S. Further claims of clear metalinguistic nature are also provable in (tb). For instance, TB[S]

proves the claim that the global re�ection principle for S entails the consistency of S. Formally:

(4) ∀x (PrS(x)→ Tx)→ Con(S)

This implication is simply obtained by instantiating (the code of) an S-falsity in GRP(S).

Already in this �rst step, it should be clear that we aim at semantic extensions of S in the

sense of coherent articulations of a concept of truth over the base theory S. For instance, one

could simply extend S with the sentences ∀x (AxS(x) → Tx) or GRP(S) as new axioms.

The sentences above clearly do not su�ce to count as axioms for the truth predicate T: in the

�rst case the the resulting theory is clearly interpretable in S by taking the truth predicate in

question to be de�ned by AxS(x) itself; in the second case, the full schema (tb) is not necessary
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to derive (4), as the ‘modal’ axiom Tpφq → φ su�ces. This suggests that, in these extensions

of S, concepts other than truth could be employed as natural readings for the predicate T.

From the perspective of the theorems of S, TB[S] looks fairly innocent. First of all, it is

conservative over S. Moreover, if S is re�exive (i.e. the consistency of any �nite sub-theories

of S is provable in S, [36]), TB[S] is also relatively interpretable in S. This is because in any

given proof in S the truth predicate T can be replaced by a S-de�nable truth predicate. This

su�ces to witness the conservativity and, by Orey’s compactness theorem (see [34, §7]), the

interpretability of TB[S] in S for re�exive S.

The disquotational principles (tb), however, fall short of many further desiderata that we

would like to ascribe to the semantic core of implicit commitment. For instance the schema

(tb) cannot enable us to establish that instances of modus ponens preserve truth because every

generalization crucially involving truth provable in TB[S] can be reduced to a �nite conjunc-

tion. This means, in particular, that TB[PA] can only prove the weaker

(5) ∀x, y (SentnL(x) ∧ SentnL(y) ∧ T(x→. y) ∧ Tx→ Ty)

where SentnL(x) expresses that x is a sentence of L of complexity ≤ n for any given n but not

for arbitrary sentences of L and the expression→. (and f. more generally) represents in S the

syntactic operation of entailment (resp. f ).17

Therefore pure disquotation is not su�cient for our purposes. Therefore, as second step, one

might think of extending TB[S] with further truth-theoretic principles so as to derive the non-

restricted versions of (5). Obvious candidates are the so-called compositional truth axioms such

as ‘¬ϕ is true if and only if ϕ is not true’, which govern the interaction of the truth predicate

and the logical constants. For instance, since we might safely assume that S is formulated in a

calculus in which modus ponens is the only logical rule of inference (see, for instance, [8]), we

would only need to add to S the sentence

(6) ∀x, y (SentL(x) ∧ SentL(y) ∧ T(x→. y) ∧ Tx→ Ty)

17Here the complexity of a formula can simply be taken as the number of logical symbols in it.
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to derive the truth-preserving character of modus ponens.

If S is �nitely axiomatized, therefore, TB[S]+(6) enables us to prove that all non-logical

axioms of S are true and that — if the logic is rightly chosen — that all rules of inferences of

S preserve truth. However, there are at least two problems with this theory: in the �rst place,

it does not articulate a coherent semantic notion as we usually demand that the truth of a

compound sentence depends on the truth of its compounds, and this theory has no such feature.

In short, the theory is not (fully) compositional. Secondly, if S is not �nitely axiomatizable, it

cannot prove that all non-logical axioms of S are true. In fact, as the next lemma shows, it

cannot do so even if we add to S a fully compositional theory of truth:

Lemma 1. Let S be formulated in LT and assume it satis�es full induction for LS – that is the

truth predicate is not allowed into instance of induction. This theory extended with the sentences

CtermLS (x1) ∧ . . . ∧ CtermLS (xn)→
(
TpR(ẋ1, . . . , ẋn)q↔ R(x1, . . . , xn)

)
(7)

SentLS (x)→
(
T(¬. x)↔ ¬Tx

)
(8)

SentLS (x→. y)→
(
T(x→. y)↔ (Tx→ Ty)

)
(9)

SentLS (∀. vx)→
(
T(∀. vx)↔ ∀yTx(ẏ/v)

)
(10)

cannot prove that all axioms of S are true.

In (7), R ranges over the relation symbols of LS .

Proof. Assume that S+(7)-(10) proves

(11) ∀x (AxS(x)→ Tx),

We can then show that the formula

(12) K(x) :↔ (∀y ≤ x) (PrvS(y)→ Tend(y))

is progressive in it. In (12), PrvS is a ∆b
1 predicate expressing the notion of being a proof in

S and end(·) is a Σb
1-function that outputs the last element of of a S-proof. Therefore, still by
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Solovay’s result on subcuts (see Proposition 2), we �nd an initial segment of the S-numbers

satisfying the property expressed by K(x) in which all logical axioms of S are true and then

prove the consistency of S relative to this initial segment.18 By a strengthening of Gödel’s

second incompleteness theorem due to Pudlák ([44, Cor. 3.5]), therefore, this is su�cient to

show that S cannot interpret S+(7)-(10). However, S+(7)-(10) is known to be interpretable in

S (see [7, §16.5]). �

The full compositional clauses (7)-(10) are without doubt desirable features for a notion of

truth. Moreover, this notion of truth is a natural component of the acceptance of S via sound-

ness claims, and soundness claims are, in turn, an integral part of many accounts of implicit

commitment. As we have seen, however, there are also limitations to which soundness claims

one can assume, depending on one’s foundational stance. We have considered already exam-

ples of such limitations: for example the ones related to the re�ection principles RFN(EA)

or RFN(PA) — and, a fortiori, their global versions — for positions such as �nitism or �rst-

orderism à la Isaacson. Nonetheless, as we shall soon point out, no such limitations occur for

the compositional truth clauses. What is even more surprising is that we can allow explicit

soundness claims relative to the non-logical axioms of an arbitrary theory S without trespass-

ing into the realm of what’s unprovable in S. This can be established in full generality.

As the third, and �nal step of the construction of the semantic core we consider the theory

CT[S] obtained by expanding the language of the theory S with a truth predicate not allowed

into instances of the non-logical axiom schemata, and of extending S with the principles (7)-

(11).

Halbach in [20] attempts to prove the conservativity of CT[S] \ (11) via a cut elimination

argument. His argument relies on a reformulation of CT[S] in a (�nitary) two-sided sequent

calculus with cut by rewriting (7)-(10) as rules of inference, e.g.

Γ,Ts⇒ ∆ (¬-R)
Γ,SentL(s)⇒ ∆,T(¬s)

18For details concerning this strategy, see [39].
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and then proceeds via an attempt to eliminate cuts on formulas of the form Ts from derivations

in this theory. Leigh in [33] shows that this strategy can only remove cuts of a provably �xed

complexity (cf. [33, §3.7]). He then shows how to �x Halbach’s strategy by �nding suitable

bounds to the complexity c(·) of truth-cut-formulas in CT[S]-derivations – for S interpreting

EA – so that CT[S] can be embedded in the system resulting from replacing the full cut rule

for formulas of the form Ts with a weaker set of rules

Γ,Ts⇒ ∆ Γ⇒ ∆,Ts

Truth-free proof
...

Γ, SentL(s)⇒ c(s) ≤ n
Γ⇒ ∆

(Cutn)

for each n and a suitably bounded version of (11). Crucially, this system enjoys a standard

version of cut-elimination for cuts on truth ascriptions. Derivations of truth-free sequents

of the form Γ ⇒ ∆ are then regimented via the notion of approximation of a sequent, �rst

considered by Kotlatski, Krajewski, and Lachlan in [28], that enables one to control such proofs

in CT[S] and transform them into proofs of the same sequent where only applications of the

modi�ed rules are employed. Finally, one eliminates cuts on formulas of the form Ts in a

standard manner. This strategy yields the following:

Proposition 4 ([33, Thm. 2]). For S ⊇ EA, CT[S] is a conservative extension of S.

Proposition 4 tells us that the semantic principles of the theory CT[S] can safely be included

into the semantic core of the implicit commitment for S. Our main thesis is now taking shape:

in accepting an arithmetical theory S, we are always implicitly committed to the theory CT[S],

which amounts to the �xed, invariable component of our commitment. Crucially, whether or

not CT[S] exhausts our commitments depends on the particular foundational standpoint that

led us to accept a given theory S in the �rst place.19

19If one grants a claim repeatedly reported in print (for instance by [16, Thm 3.4]) one might think that the theory
CT[S] could not be extended with the assertion of the truth of non-logical axioms of S because CT[S]+‘all logical
axioms of S are true’ proves the consistency of S. Unfortunately, the argument for that claim contains a gap as
shown in detail in the Appendix to [51]. We strongly conjecture that CT[S]+‘all logical axioms of S are true’ is
conservative over S, but no full proof has been found yet.
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This completes the presentation of the semantic core for implicit commitment: it amounts

to an extension of S with compositional truth axioms and the claim that all the (non-logical)

axioms of S are true. In our account, it is a necessary condition for implicit commitment but

possibly not a su�cient one: this will depend on the foundational standpoint that one is adopting

in justifying a speci�c formal system S.

Before giving concrete examples of how our reading of (ICT) in the light of the semantic core

applies to the positions considered above, we anticipate two possible objections to the structure

of the semantic core.20 The semantic core may be accused of being too arti�cial given (i) the

absence of natural soundness principles such as Con(S), and (ii) the absence of the closure

under �rst-order reasoning. We consider the two objections separately.

To the �rst objection a natural reply is that it is not the task that we are assigning to the

semantic core to decide which soundness extension of the base theory S is natural or not.

The question we are addressing is in fact whether someone who considers a base theory S

as epistemically stable in the sense of §1 can consistently accept (ICT): with the semantic core

we aim at providing a framework to answer this question a�rmatively. In other words, we do

not claim that, say, Con(S) is not a natural principle to endorse once that one has endorsed S,

but we share with Dean the view that if the justi�cation of Con(S) is equivalent to principles

that are incompatible with the alleged epistemic stability of S, as we have seen is the case in

the case of �nitism and �rst-orderism, then such a justi�cation cannot be implicit in the mere

acceptance of S but should stem from more general considerations. For instance, as we shall

see in a moment, although Isaacson considers Con(PA) a principle of in�nitary nature, this

does not mean that its acceptance should be denied: it simply follows from the acceptance of

a suitable portion of in�nitary mathematics although it is not implicit in the acceptance of PA

that – according to �rst-orderism – delimits the boundaries of �nite mathematics. This is all

compatible with the framework provided by the semantic core.

To address the second objection a similar line of reasoning can be employed: closure of truth

under logical reasoning is not a principle that we deem incorrect nor undesirable. However,

20We thank the anonymous referees for allowing us to clarify this point.
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under the condition of the epistemic stability of a theory S, the re�ection principle for logic

entails principles that are incompatible with this epistemic status such as Con(S). Still, we

have shown that there are weaker forms of soundness – such as the truth of all axioms of S –

that are on the one hand not available in S but on the other deductively innocent with respect

to S: this makes, we will argue, these weaker soundness claims �t the demands of the implicit

commitment thesis (ICT) without falling prey to Dean’s objections. Once again, the point is

that someone may be implicitly committed to the semantic core even if she believes that in

accepting S she is not implicitly committed to accept principles unprovable in S: in turn, this

does not rule out that she might also have an independent justi�cation for these unprovable

claims such as Con(S) or the re�ection principle for logic.

4. Schematic reasoning and the structure of implicit commitment

Several foundational standpoints, including the ones considered above, can be compared

and distinguished by taking into account the role of the schemata of induction of the arith-

metical systems associated to them. In this section we employ these di�erent understandings

of schematic reasoning to assess the e�ectiveness of our dynamic analysis of implicit commit-

ment based on the distinction between the constant semantic core and its variable components.

At one end of the spectrum, we �nd advocates of restrictions of the arithmetical induction

schema. Tait’s �nitism and Nelson’s ultra�nitism are paradigmatic examples of this sort: in

both cases claims about the totality of natural numbers can only be reached for a class of

‘acceptable’ predicates that are proper subclasses of the ones expressible by formulas of the

language of arithmetic. The remaining instances of the induction schemata are, according to

these standpoints, at least suspicious if not false. At the other end of the spectrum, we �nd

authors defending the view that, once accepting a system S, not only we should impose no

restriction to non-logical axiom schemata, but we should also allow for extensions of these

schemata to possible expansions of the starting language.

This latter view can be understood of course in di�erent senses. On a radical reading, sim-

ilar to what Vann McGee suggested in [35], the acceptance of, say, PA, should commit us to
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instances of induction corresponding to any subset of natural numbers. This possibility is sup-

posed to be rooted in how mathematical language itself is learned and communicated.21 This

radical form of open-endedness of axiom schemata leads quickly to very strong theories, in

fact, categorical ones. Critics of this position notice in fact that — despite McGee’s e�orts — it

is also committed to the rich ontology of second-order logic (see [40]).

Feferman’s notions of re�ective closure of a theory S (see [12]) represent a less radical al-

ternative. It comes in two versions: the re�ective closure of S and the schematic re�ective

closure of S. In both cases, the interaction of semantic resources and the power of the induc-

tion of PA enable one to reach strong subsystems of second-order arithmetic. In the case of the

re�ective closure of PA one reaches the strength of rami�ed analysis up to ε0 via the theory

of self-applicable truth KF, whereas the schematic re�ective closure of PA takes the form of

a type-free theory of truth as strong as rami�ed analysis up to the Feferman-Schütte ordinal

Γ0 (i.e, roughly speaking, the theory resulting form iterating predicative comprehension α-

times for α < Γ0) [11, 45].22 Feferman’s approach therefore, although clearly committed to

schematic reasoning, is clearly weaker than McGee’s, since it only delivers a proper subsystem

of second-order arithmetic.

21As McGee writes:

Our understanding of the language of arithmetic is such that we anticipate that the Induction
Axiom Schema, like the laws of logic, will persist through all such changes. There is no single
set of �rst-order axioms that fully expresses what we learn about the meaning of arithmetical
notation when we learn the Induction Axiom Schema, since we are always capable of generating
new Induction Axioms by expanding the language [35, p. 58].

22 More precisely, such a theory amounts to an extension of the type-free theory of truth KF in LT∪{P} equipped
with a schematic rule of substitution ψ(P )/ψ(χ), with ϕ(P ) not containing truth, that replaces every subformula
P of ψ(P ) with by χ. The axioms of KF are the axioms of PA formulated in L ∪ {T} and the sentences

CtermLT(~x)→
(
(TpR(~̇x)q↔ R(~x)) ∧ (Tp¬R(~̇x)q↔ ¬R(~x))

)
(13)

(TpT(ẋ)q↔ Tx) ∧ (Tp¬T(ẋ)q↔ T¬. x)(14)
SentLT(x)→ (T¬. ¬. x↔ Tx)(15)
SentLT(x∧. y)→ (T(x∧. y)↔ Tx ∧ Ty)(16)
SentLT(x∧. y)→ (T¬. (x∧. y)↔ T¬. x ∨ T¬. y)(17)
SentLT(∀. vx)→ (T∀. vx↔ ∀y (CtermLT(y)→ Tx(y/v))(18)
SentLT(∀. vx)→ (T¬. ∀. vx↔ ∃y (CtermLT(y)→ T¬. x(y/v))(19)
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Among the authors that hold an intermediate position between the ones just considered

we �nd Isaacson himself. He does not seem to impose any restriction to the class of formulas

allowed to appear into instances of induction; however, he also clearly states that any further

instance of induction involving extra-vocabulary would be intrinsically higher-order, inasmuch

as the axioms of full PA su�ce to characterize what he calls ‘�nite mathematics’ ([24, p. 204]).

4.1. Restricted schemata and (ICT). In §2, we have defended the claim that the notion of

truth is integral to any reasonable articulation of what we are implicitly committed to when

accepting a given arithmetical theory. Of course this comes as no surprise and, as we have seen,

our view is shared by many authors. Our intention, however, is not to reformulate a widespread

position on the role of truth in foundations, but to suggest something further. What concern

us, indeed, is to examine how the notion of truth, as a device to unravel our commitments,

can coexist with narrow readings of the implicit commitment thesis (ICT), namely readings

which do not allow for claims that are underivable in the accepted arithmetical theory, above

all uniform re�ection principles.

The case studies of narrow readings of (ICT) stem Dean’s analysis of Tait’s and Isaacsons’

theses. For instance, in the case of Tait’s �nitism, the uniform re�ection principle for the sub-

theory EA of PRA was su�cient to deliver the full schema of induction of PA (see Proposition

1). If the �nitist’s reading of (ICT) involved principles such as RFN(PRA), she would also be

committed to PA, which clearly outstrips primitive recursive reasoning. There is, therefore, a

strong temptation for concluding that (ICT) is incompatible with �nitism or, even more dras-

tically, that it is false.23 This temptation, we argue, should be resisted. The semantic core for

implicit commitment introduced in §3 gives us a way to accommodate the strong intuition that,

even for the �nitist’s defence of PRA, (ICT) is best spelled out in terms of truth; the semantic core

also tells us, however, that these additional resources, being clearly of meta-theoretic and not of

object-theoretic nature, do not interfere with the arithmetical content of PRA that the �nitist wants

to preserve.

23Dean seems to support something along the lines of the �rst claim.
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Over PRA – or better its conservative extension in �rst-order logic QF-IA – which is known

to be not �nitely axiomatizable, the semantic core does not only involve compositional truth

axioms of the form (7)-(10) on page 19, but also the single sentence stating the truth of all the in-

�nitely many non-logical axioms of PRA. By Proposition 4, the resulting theory CT[PRA] does

not yield new arithmetical consequences. Nonetheless, it is capable of deeming true the equa-

tions for all primitive recursive functions and all instances of the induction of PRA, all instances of

each individual propositional tautology of LT, and establishing that the rules of inference of the

chosen logical calculus are truth-preserving. The �rst and last fact follow respectively from the

assumption (11) and the axiom (9). The truth of all instances of each propositional tautology

follows from a suitable instance of a logical axiom schema of CT[S] and the axioms (7)-(10):

for instance, in the case of the law of excluded middle, one starts with Tx∨¬Tx for SentLS (x)

and concludes, by (8) and (9), ∀x(SentLS (x)→ T(x∨. ¬. x)).

The bearing of this fact should now be clear: we have already argued that truth provides a

powerful and natural tool to express one’s commitment to a base theory, PRA in the case at

hand. Dean cast doubts on the possibility of harmonizing a satisfactory notion of truth and the

exclusive commitment to theorems of PRA that appears to be essential to Tait’s standpoint. The

semantic core o�ers a minimal sense in which this balancing process can actually succeed; we do

have a notion of truth satisfying some adequacy requirements, such as the partial metalinguistic

re�ection available in CT[PRA] just considered, and yet we cannot go beyond what’s provable in

PRA.

Moving to what we called ultra�nitism, in order to draw conclusions along the lines of

the ones just obtaineed for PRA, we would need an analogue of Proposition 4 for all theories

containing S12. This claim is, unfortunately, still only a likely conjecture. At any rate, this

more general version of Proposition 4 would then establish that the semantic core for implicit

commitment relative to a theory S gives us a theory that does not give us new theorems in LS ,

and in particular Π1-sentences such as the consistency of Robinson arithmetic, Con(Q), that

are not available in ultra�nitistically acceptable theories.
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4.2. Full arithmetical induction and beyond. Isaacson considers PA as specifying a self-

standing portion of mathematical reality. In his view, full-induction onL still belongs to or even

delimits the realm of �nite mathematics: principles that properly extend PA, such as RFN(PA),

must therefore appeal to in�nitary resources. Again, the semantic core o�ers us the possibility

of identifying a metalinguistic component of the implicit commitment to PA and by distin-

guishing it from the object-linguistic, or mathematical content of PA. The conservativeness of

CT[PA] over PA tells us that proofs of theorems in the language ofL in CT[PA] are not a�ected

by the metalinguistic component embodied in the truth principles of CT[PA].

Arguably, Isaacson would regard the semantic components of CT[PA] as intrinsically in�ni-

tary, but this is not a problem for our reading of (ICT). The implicit commitment to PA, if one

regards it as ‘arithmetically complete’, would be delimited by the semantic core, and its non-

arithmetical, in�nitary components do not interfere in any way with its mathematical ones in

CT[PA]-proofs. This is once more an example of how the semantic core can combine the idea of

a privileged access to a de�nite portion of mathematical reality given by a speci�c theory with

the natural act of re�ection on the metalinguistic aspects of this theory via semantic notions.24

Isaacson’s position clearly contrasts with views such as Feferman’s, who considers the ex-

tension of the induction schema of PA as essential to unravel the class of arithmetical asser-

tions we are implicitly committed to when accepting PA in the �rst-place. In such positions,

schemata are open-ended, and there is no need to stop the truth predicate to interact with

the arithmetical content of PA. The semantic core CT[PA], in such view, counts only as a class

of necessary conditions that our notion of truth has to satisfy. The theory of truth Feferman is

putting forward to fully articulate our commitment to PA, namely KF, contains CT[PA] and is

spectacularly stronger than it: it corresponds in fact to ε0-many iterations of ACA. In terms of

classical ordinal analysis, KF will prove the same arithmetical theorems as PA plus trans�nite

induction up to ϕε0(0).25 According to our proposed reading of (ICT), therefore, Feferman’s

24This separation between object-linguistic and meta-linguistic aspects of theories can be even made more drastic.
Perhaps in this setting the distinction between arithmetical and syntactico/semantic content may even be more
convincing for authors that stress the epistemic stability of an arithmetical theory S. We refer to [38] for an
overview of such options.
25For a de�nition of the Veblen functions, see [43].
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acceptance of PA is tied not only to the semantic core, but to a substantial amount of math-

ematical principles that can be measured by the big gap separating the trans�nite induction

schemata for L associated to the ordinals ε0 and ϕε0(0). In moving from Isaacson’s to Fefer-

man’s position, the semantic core stayed the same, whereas the variable component, which

was empty in the case of Isaacson, now includes a large amount of analysis.

There is, however, an unexpected bridge between Isaacson’s and Feferman’s positions. Once

the truth predicate is not allowed into the induction schema of PA, KF becomes much closer

to CT[PA]. This theory, called KF � in [20], is in fact conservative over PA. Any modelM of

PA can be expanded to a model (M, S) of KF � by tanking S to be a �xed point of a suitable

positive inductive de�nition capturing the clauses of the construction of a Kripke truth set (see

[32]).

Instead of being a mere curiosity, this point highlights how the di�erence between the view

of implicit commitment associated with the �rst-orderist à la Isaacson and with the predica-

tivist may be seen as not lying in their conception of truth, but in their understanding of

schematic reasoning. If in fact our distinction between object-linguistic and metalinguistic

component of a truth theory is granted, then the �rst-orderist can articulate a robust notion of

truth and yet distinguishing between the arithmetical reality that PA is isolating and the mere

metalinguistic consequences that become available once one moves to its extension CT[PA].

She might even move to a type-free notion of truth, as articulated by KF �, for instance, with-

out exceeding the arithmetical consequence of PA. Once the truth predicate is allowed to do

mathematical work, however, the situation drastically changes.

This scenario reinforces the usefulness of our analysis of implicit commitment via the se-

mantic core: the latter in fact gives us necessary conditions for soundness extensions of a mathe-

matical theory we accept and it is compatible with both restrictive and relaxed readings of (ICT).

Of course once one has reached a satisfactory halting point, such as KF for Feferman’s anal-

ysis of implicit commitment, nothing prevents one from asking herself what we are implicitly

committed to when we are accepting the theory of truth. If Feferman’s strategy is extended to



THE IMPLICIT COMMITMENT FOR ARITHMETICAL THEORIES 29

the theory of truth, for instance, one can obtain extensions of KF via uniform re�ection princi-

ples. Indeed, Horsten and Leigh in [23] have shown that extensions of KF can be obtained by

starting with TB[PA] via �nitely many iterations of uniform re�ection.26 However, since we

are not interested in the theory of truth itself, but only in the boundary between acceptable

and non-acceptable characterizations of the implicit commitment for the base theory, we do

not consider further this possible extension of our analysis.

5. Conclusion

The implicit commitment thesis (ICT) prescribes that, in accepting a system S formalizing

some portion of mathematics — arithmetic in our case studies — one is committed to resources

not immediately available in S. Traditionally, these additional resources have been understood

in terms of sentences in the language of S that are not provable inS already, typically re�ection

principles for S expressing the soundness of S.

As recently shown by Dean, however, certain foundational standpoints consider a particu-

lar arithmetical theory S as delimiting a privileged region of mathematical reality. Re�ection

principles for the theory S therefore, being closely related to mathematically meaningful prin-

ciples that lie beyond the space of mathematics occupied by S (see §2 ), should be considered

as incompatible with those foundational standpoints. Examples of such positions are Tait’s

justi�cation of PRA, Isaacson’s thesis on PA, and to some extent Nelson’s strict �nitism.

Starting with the observation that soundness claims of S can only be fully articulated by

resorting to the notion of truth, we have proposed a dynamic and widely applicable reading of

(ICT). The additional resources we are committed to when accepting S will contain principles

for truth: these principles, what we called the semantic core for implicit commitment, are �xed

and shared by any reasonable justi�cation for the acceptance of a system S. They amount to

compositional truth principles and include minimal soundness claims for S such as the truth

of all its non-logical axioms, the truth of all instances of each propositional tautology and,

in reasonably chosen cases, the truth-preserving character of its rules of inference. Further

26A similar strategy for a nonclassical setting in which the starting point are type-free principles of the form
Tpϕq⇔ ϕ, with⇔ a suitable non classical biconditional has been carried out by [17].
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principles extending the semantic core of implicit commitment depend on the justi�cation for

S provided by the idealized mathematician.

This analysis that we have provided is adequate with respect to the case studies considered in

the �rst part of the paper: the semantic core, when added to S, prevents one from proving new

consequences in the language of S besides the ones already available in S itself. Moreover, all

natural articulations of soundness assertions of S in the form of stronger truth principles will

contain the semantic core; whatever variable components one is willing to add to the semantic

core, therefore, they will not be incompatible with it.27
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