
DRAFT. Please do not cite without permission.

Report
Levelling Data Representations

Salvatore Florio, Carlo Nicolai, and Chris Partridge

4 June 2025

Contents

1 Introduction 2
1.1 Schemata-as-patterns . 2
1.2 bClearer . 3
1.3 Logical methods and formalization . 3
1.4 Looking ahead . 3

2 Operations 4
2.1 Simple Predicate Pushdown . 4
2.2 Levels . 5
2.3 Monadisation . 5
2.4 Pairing . 6
2.5 Monadicized Predicate Pushdown . 7

3 The Unification Algorithm 7
3.1 Initial Data . 8
3.2 Simple Predicate Pushdown . 9
3.3 Levelling . 10
3.4 Pairing . 11
3.5 𝜂-Merging . 12
3.6 Monadicisation . 13
3.7 Iteration . 14

4 The General Formulation 15

1

DRAFT. Please do not cite without permission.

1 Introduction

This is an initial report on the work of the commercialisation project Levelling Data Represen-
tations (AHRC Grant AH/Z506515/1). The project successfully provided a logical foundation for
the data engineering unification process developed in bCLEARer by BORO Solutions. The pa-
per provides a logical picture of the micro-transformations that compose the unification process.
This has enabled a much clearer picture of the transformation space. From this, one can build
a vision of possible improvements to the bCLEARer process. We plan to exploit this at the next
stage.

1.1 Schemata-as-patterns

A common style for data architectures uses syntax to capture schemata as repeatable patterns in a
given data language. This typically involves a syntax that segregates the representational domain
into schemata objects and schemata-bound objects, where a hard-coded schemata framework
is used to encode the repeatable patterns, and to impose them upon schemata-bound objects
through an instantiation relation.

At its simplest, the use of schemata involves a two-level structure. Two good examples are the
relational paradigm (implemented in SQL), widely used in computing, and table-based structures.
In the relational paradigm, the schemata are explicitly called (data) schema. Here the schema
syntax of database tables and column headings is used to capture the repeatable patterns, and
the harmonised data (instance) syntax of rows and cells enable the schema-bound data objects
to have the schema level structure imposed on them.
The schemata pattern can recur. In other words, when the schemata objects themselves have

repeatable patterns, this can be encoded in a higher level schemata structure where the schemata
objects play a schemata-bound role. This results in a domain that is divided into a (linear) chain
of ranked layers. A good example of this is Object Management Group’s Meta-Object Facility
(MOF), with its layers, typically four: M0, M1, M2, and M3. This has schema structures linking
the adjacent pairs of connected layers (see table below), where each pair has its instantiation
relation to bind the schema to its objects.

schema structure schema objects layer schema-bound objects layer
M0-M1 schema structure M1 M0
M1-M2 schema structure M2 M1
M2-M3 schema structure M3 M2

The relational paradigm (a two-level schema-based architecture) emerged in the 1970s and be-
came commonplace in the 1980s. While it was broadly successful, there were a number of areas
where it was found to be an inappropriate approach. An ubiquitous problem was integrating
heterogeneous datasets: datasets with no obvious common schema structure, with new datasets
possibly introducing unexpected schema structures. In this context, it made no sense to invest
in an architecture that expected the schema structure to be finalised upfront.

2

DRAFT. Please do not cite without permission.

1.2 bClearer

bCLEARer is an ontology-driven data platform framework that uses pipelines to transform, in-
tegrate, and exchange information from heterogeneous datasets. Over the past three decades,
bCLEARer has evolved a micro-transformation architectural style for its pipelines that helps
make the fine-grained transformation structure inspectable.

This visibility has revealed recurring motifs, including a family of refactoring micro-transfor-
mations that build into amacro-transformation that we call unification (the unification processed
referred to above). Unification has been found to help streamlining integration as well as sup-
porting the sophisticated general data structures needed for foundational ontologies.

1.3 Logical methods and formalization

One can see a close analogy between standard predicate logic (including higher-order logic) and
the schema-separation architectural style. In both cases, the domains are separated into a linear
hierarchy of layers, which are used to capture repeatable patterns. As described earlier, the
syntactic predication/instantiation relation is used as a link between layers.
Some elements of this data unification architectural style have been developed within formal

logic, in particular in the context of techniques employed to transform multiple-domain (many-
sorted) structures modelling higher-order logic into single-domain structures suitable for first-
order logic. A clear example isQuine’s unification of universes (1956). This suggested to us that we
may be able to represent in predicate logic the bCLEARer micro-transformations for migrating
from schema-based datasets to unified datasets.
This is what has been achieved in the project. Because the instantiation/predication relation at

the heart of formal logic is both simpler and better studied than its data-engineering counterparts,
examining its unification micro-transformations has provided a rigorous foundation to a mostly
pragmatic computerised process. The formalization opens the way to (i) review the existing
pragmatic process embedded in bCLEARer and (ii) uncover new opportunities to improve such
processes. The formalization of the transformations are described in the body of the report.

1.4 Looking ahead

At a first stage, the project has developed a good picture of the logical counterparts of the data
engineering micro-transformations. These are described in the body of the report. From this,
a vision of the transformation space is beginning to emerge, one that exposes how schemata
based representations can be migrated into a more tractable and expressive graph-based repre-
sentation. Also, the nature of the increased expressivity afforded by the unification process is
becoming clearer. So, even at this early stage, we can see multiple opportunities for commercial
exploitation.

3

DRAFT. Please do not cite without permission.

2 Operations

2.1 Simple Predicate Pushdown

The operation replaces syntactic predication with an explicit instantiation predicate. Ex-
amples:

𝑃(𝑎) ↦ 𝜂01(𝑎, 𝑝)

𝑅(𝑎, 𝑏) ↦ 𝜂001(𝑎, 𝑏, 𝑟)

𝑄(𝑃) ↦ 𝜂12(𝑞, 𝑝)

𝜂01(𝑎, 𝑝) ↦ 𝜂
(01(01))

(𝑎, 𝑝, 𝑒
(01)

)

The indices of the 𝜂-predicates track the types relevant to the predication replaced. Suc-
cessive applications of the operation retain this “historical” information in the form shown
by the last line.

Formal Predicates. ‘Structural’ predicates, such as instantiation and pairing, are considered
formal. The operation of Simple Predicate Pushdown introduces new formal predicates, namely
an instantiation predicate for each form of predication in the original language.

Contentful Predicates. The operation replaces contentful predicates, which correspond to data
schemes, with individual constants.

Domain Expansion. The domain expands with new objects, the denotations of the new in-
dividual constants obtained from contentful predicates as well as from instantiation relations
obtained via iterations of simple pushdown.

Iterations. Simple predicate pushdown can be iterated. Starting with the second iteration,
only ‘structural’ predicates and constants (constants for instantiation relations) are added: in
the boxed examples, the relation 𝜂01 is replaced by the constant 𝑒

(01)
.

Arity. The predicates in the new language increase by one the arities of those in the previous
language.

Order. This operation translates the vocabulary of the previous language, regardless of its order,
into first-order vocabulary.

4

DRAFT. Please do not cite without permission.

2.2 Levels

The operation adds ‘formal’a predicates expressing syntactic types of the previous lan-
guage.b

𝑎, 𝑏, 𝑐 … ↦ 𝐿0(𝑎), 𝐿0(𝑏), 𝐿0(𝑐)...

𝑃 ,P, 𝑋 ,X... ↦ 𝐿1(𝑝), 𝐿2(p), 𝐿1(𝑥), 𝐿2(x) …

𝜂(⟨𝑎, 𝑝⟩) ↦ 𝐿
∗

1
(𝑒), 𝐿0(⟨𝑎, 𝑝⟩)

aThis could even be understood in terms of permutation invariance.
bIn the example, fraktur alphabet is used for third-order predicates and constants.

Formal Predicates. The operation adds new structural/formal predicates. In the case of levels,
there’s a case to be made that levels can be seen to be ‘logical’ in the sense of permutation
invariance.

Contentful Predicates. Assuming that the operation only adds formal levels, the operation of
levels does not add new contentful predicates.

Domain Expansion. By itself, the operation does not add new objects in the domain.

Iteration. The procedure is not per se iterated, but takes place at every iteration. New level
predicates are added, and the old ones are not translated.

Arity. The new level predicates are unary, even in iterations. The old level predicates’ arity is
preserved.

Order. The operation only adds new first-order predicates.

2.3 Monadisation

The operation employs pairing to turn (first-order) predicates with arity > 1 into unary
predicates.

𝑅(𝑎, 𝑏) ↦ 𝑅
∗
(⟨𝑎, 𝑏⟩)

𝜂(⟨𝑎, 𝑝⟩, 𝑒) ↦ 𝜂
∗
(⟨⟨𝑎, 𝑝⟩, 𝑒⟩)

Formal Predicates. The operation rests on (but not formally introduces per se) formal predi-
cates for pairing and associated projections.1

Contentful Predicates. Assuming that the operation only adds formal pairing predicate and
projections, the operation of monadisation does not add new contentful predicates.

1The notion of formality is semi-formal, and cannot be explained in terms of permutation invariance as in the case
of formal predicates levels.

5

DRAFT. Please do not cite without permission.

Domain Expansion. The operation demands adding new pairs in the domain whose compo-
nents are the new domain entities resulting from predicate pushdown.

Iteration. The procedure is iterated, and results in a domain expansion at each iteration, but
no new formal predicates for pairing and projection are added once they are introduced (see
pairing).

Arity. The operation reduces predicates’ arity, ‘turning’ all of predicates into unary ones.

Order. Monadisation always operates at the first-order level. The ‘tuples’ involved in the oper-
ation are considered to be individuals in the relevant domain.

2.4 Pairing

The operation introduces ordered pairs of objects recognized in the previous language.
This relies on a pairing predicate (Pair) and two definable projection predicates (Left
and Right). Example:

𝑎, 𝑏… ↦ ∃𝑥Pair(𝑥, 𝑎, 𝑏)

The operation is accompanied by axioms and definitions characterizing the order pairs,
such as:

(Pair(𝑥1, 𝑦1, 𝑧1) ∧ Pair(𝑥2, 𝑦2, 𝑧2)) → (𝑦1 = 𝑦2 ∧ 𝑧1 = 𝑧2 ↔ 𝑥1 = 𝑥2) (Pair-Identity)

∃𝑧Pair(𝑥, 𝑦, 𝑧) ↔∶ Left(𝑥, 𝑦) (Pair-Left)

∃𝑦Pair(𝑥, 𝑦, 𝑧) ↔∶ Right(𝑥, 𝑧) (Pair-Right)

Formal Predicates. The operation introduces a formal predicate, namely Pair, governed by
appropriate axioms. Successive applications do not introduce additional pairing predicates.

Contentful Predicates. The operation does not introduce new contentful predicates.

Domain Expansion. The domain expands with ordered pairs of objects recognized in the pre-
vious language. The size of the expansion can be controlled by axioms. A minimalistic approach
assumes only pairs of specific objects previously recognized. A more liberal approach assumes
all pairs that can be formed on the basis of a given pool of objects, including pairs of pairs, pairs
of pairs of pairs, and so on.

Iterations. Pairing can be iterated. Iterations add new pairs, without relying on new predicates.

Arity. The operation introduces a ternary predicate and two definable binary predicates. It
leaves the arity of other predicates unchanged.

Order. Pairing does not affect the order of the language.

6

DRAFT. Please do not cite without permission.

2.5 Monadicized Predicate Pushdown

The operation replaces syntactic predication with an explicit, unique binary instantiation
predicate. A pairing operation is used to reduce arities > 1 to a binary form. Examples:

𝑃(𝑎) ↦ 𝜂(𝑎, 𝑝)

𝑅(𝑎, 𝑏) ↦ 𝜂(⟨𝑎, 𝑏⟩, 𝑟)

𝑄(𝑃) ↦ 𝜂(𝑞, 𝑝)

𝑆(𝑃, 𝑎) ↦ 𝜂(⟨𝑝, 𝑎⟩, 𝑠)

𝜂(𝑎, 𝑝) ↦ 𝜂
′
(⟨𝑎, 𝑝⟩, 𝑒)

Successive applications of the operation introduce new 𝜂s (𝜂′, 𝜂′′,. . .), and the previous 𝜂s
appear as entities in the domain (𝑒, 𝑒′,. . .).

Formal Predicates. Each application of Monadicized Predicate Pushdown introduces one new
formal instantiation predicate, which might be accompanied by other structural predicates, such
as pairing.

Contentful Predicates. The operation replaces contentful predicates, which correspond to data
schemes, with individual constants.

Domain Expansion. The domain expands with new objects, the denotations of the new in-
dividual constants obtained from contentful predicates as well as from instantiation relations
obtained via iterated applications. The domain also expands with ordered pairs corresponding
to arguments of relations in the previous language.

Iterations. The operation can be iterated, as also shown in the last example. Starting with the
second iteration, only ‘structural’ predicates and constants (constants for instantiation relations)
are added. That is, we successively introduce new 𝜂s (𝜂′, 𝜂′′,. . .), and the previous 𝜂s appear as
entities in the domain (𝑒, 𝑒′,. . .) .

Arity. Each application of the operation yields a language with a single binary predicate for in-
stantiation. So, starting after the first applicaiton, the arity of predicates in the language remains
fixed.

Order. This operation translates the vocabulary of the previous language, regardless of its order,
into first-order vocabulary. So the order is fixed after the first application.

3 The Unification Algorithm

We apply the operations introduced to realize our unification ‘algorithm’: the procedure is in-
tended to start with (a formalization of) raw data and proceeds with applications of the oper-
ations above arranged in a specific sequence; once the first cycle ends, the procedure can be
applied again in the first iteration cycle, and so on until a stability point is reached.

7

DRAFT. Please do not cite without permission.

Initial Data

Simple Predi-
cate Pushdown

Levelling

Pairing

𝜂-merging

Monadicising

iteration

Remark 1. It’s worth remarking that we are presenting a natural sequence starting with initial
data that, in the intended application, is provided in some higher-order setting. The operations
introduced below may be applied individually – by allowing vacuous application when the basic
notions required by the operation are not available.2 It is also possible that data presents itself
already at some stage of the natural sequence, in which case one can simply continue with the
subsequent operations in the sequence.

3.1 Initial Data

We start with an arbitrary higher-order, relational language  employed to formalize a (possibly
empty) set of nonlogical assumptions. Suitable logical information (higher-order logic at the
appropriate level) is assumed.

Example.  is a second-order language. We add to second-order logical axioms and rules the
non-logical principles:

The Initial Theory 

𝑃(𝑎) (𝑃)
𝑅(𝑎, 𝑏) (𝑅)
Q(𝑃, 𝑏). (Q)

2E.g. one can vacuously apply Predicate Pushdown if there are no predicates.

8

DRAFT. Please do not cite without permission.

3.2 Simple Predicate Pushdown

Simple predicate pushdown can be formalized as a translation 𝜏1 of  into a first-order language
in which syntactic predications are replaced by suitable instantiations relations respecting arity
and order. [...]

Example. Continuing with the example above, we first assume a function 𝛿 whose domain is
the set of variables and constants of the language considered, which behaves as follows:

𝛿(𝑥𝑖) ∶= 𝑥2𝑖+1 𝛿(𝑋𝑖) ∶= 𝑥2𝑖

𝛿(𝑎) ∶= 𝑎 𝛿(𝑏) ∶= 𝑏

𝛿(𝑃) ∶= 𝑝 𝛿(𝑅) ∶= 𝑟 𝛿(Q) ∶= 𝑞

We can then employ 𝛿 to define the full translation of the higher-order language. I omit reference
to 𝛿 when notationally convenient.

The translation 𝜏1

𝜏1(𝑠 = 𝑡) ∶↔ 𝛿(𝑠) = 𝛿(𝑡)

𝜏1(𝑋𝑖𝑠) ∶↔ 𝜂
0⃗1
(𝛿(𝑠), 𝛿(𝑋𝑖))

𝜏1(𝑃(𝑠)) ∶↔ 𝜂01(𝛿(𝑠), 𝑝)

𝜏1(𝑅(𝑠, 𝑡)) ∶↔ 𝜂001(𝛿(𝑠), 𝛿(𝑡), 𝑟)

𝜏1(Q(𝑇 , 𝑠) ∶↔ 𝜂102(𝛿(𝑇), 𝛿(𝑠), 𝑞)

𝜏1(¬𝜙) ∶↔ ¬(𝜏1(𝜙))

𝜏1(𝜙 ∧ 𝜓) ∶↔ 𝜏1(𝜙) ∧ 𝜏1(𝜓)

𝜏1(∀𝑥𝑖𝜙) ∶↔ ∀𝑥2𝑖+1𝜏1(𝜙)

𝜏1(∀𝑋𝑖𝜙) ∶↔ ∀𝑥2𝑖𝜏1(𝜙)

Finally, the translation 𝜏1 behaves like a relative interpretation once the translations of the non-
logical axioms of  are added to first-order logic with identity. Specifically:

The theory 1

1 extends FOL with identity with the following:
𝜂01(𝑎, 𝑝) (𝑃1)
𝜂001(𝑎, 𝑏, 𝑟) (𝑅1)
𝜂102(𝑝, 𝑏, 𝑞) (Q1)

9

DRAFT. Please do not cite without permission.

Proposition

 ⊢ 𝜙(𝑋, 𝑥) ⇒ 1
⊢ 𝜏1(𝜙)(𝛿(𝑋), 𝛿(𝑥)).

3.3 Levelling

The translation 𝜏1 formalizing Simple predicate pushdown can be further relativized to suitable
levels corresponding to the ontological/ideological levels of the initial data. This can be formal-
ized as a new translation from the initial language  to an expansion of the language obtained
via Simple Predicate Pushdown with such levels.

Example. Levelling takes the language of the theory  and adds predicates for levels 𝐿0, 𝐿1, 𝐿3
corresponding to the syntactic categories of , as well as all new constants required by Simple
Predicate Pushdown; suitable ‘axioms’ are added to assign the right level to constants. This
amounts to a translation 𝜏2 from the language of  into this augmented language which is just
like 𝜏1 but suitably relativizes quantifiers.

The Levelling Translation 𝜏2

𝜏2 behaves just like 𝜏1 on atomic formulae and propositional connectives (including 𝛿).
For quantifiers:

𝜏2(∀𝑥𝑖𝜙) ∶↔ ∀𝑥2𝑖+1(𝐿0(𝑥2𝑖+1) → 𝜏2(𝜙))

𝜏2(∀𝑋𝑖𝜙) ∶↔ ∀𝑥2𝑖(𝐿1(𝑥2𝑖) → 𝜏2(𝜙))

𝜏2 only takes care of quantifiers (and variables). Levelling requires suitable axioms assigning
nonlogical constants the right level. Such axioms form the theory 2.

The Theory 2

2 features all axioms of 1 together with

𝐿0(𝑎) ∧ 𝐿0(𝑏) (𝐿0)
𝐿1(𝑝) ∧ 𝐿1(𝑟) (𝐿1)
𝐿2(𝑞) (𝐿2)

(𝐿0(𝑥) ∨ 𝐿1(𝑥) ∨ 𝐿2(𝑥)) ∧ ¬(𝐿0(𝑥) ∧ 𝐿1(𝑥)) ∧ ¬(𝐿1(𝑥) ∧ 𝐿2(𝑥)) ∧ ¬(𝐿0(𝑥) ∧ 𝐿2(𝑥)) (𝐿ED)

Finally, the translation 𝜏2 indeed preserves provability in 𝐼 .

10

DRAFT. Please do not cite without permission.

Proposition

 ⊢ 𝜙(𝑋, 𝑥) ⇒ 2
⊢ 𝐿1(𝛿(𝑋)) ∧ 𝐿0(𝛿(𝑥)) → 𝜏2(𝜙)(𝛿(𝑋), 𝛿(𝑥)).

3.4 Pairing

The operation of Pairing can be formalized as the extension of the theory resulting from the
previous operations with the axioms for Pair, Left, Right described in section 2.4. Since the
operation is intended to apply to a theory to which Levelling has been applied, the new axioms
raise questions concerning the levels to which pairs belong. We stipulate that pairs belong to a
new level disjoint from all others. 𝑛-tuples are generated by iterated pairing.

Example. The formalization of Pairing requires only a new predicate Pair. There’s no need
for a predicate for the level to which pairs belong, as this can be defined. The theory does not
specify the existence of pairs of any objects in the domain, but specifies which pairs exist. We
require that pairs/tuples corresponding to atomic facts in  exist.

The Theory 3

The language of 3 expands the language of 2 with the additional ternary predicate
Pair. Its axioms are the axioms of 2, (Pair-Left), (Pair-Right) from section 2.4, and the
following:a

(Pair(𝑥, 𝑦1, 𝑧1) ∧ Pair(𝑥, 𝑦2, 𝑧2)) → (𝑦1 = 𝑦2 ∧ 𝑧1 = 𝑧2) ∧ (¬𝐿0(𝑥) ∧ 𝐿1(𝑥) ∧ ¬𝐿2(𝑥))

(Pair-Identity-L)
∃𝑥 Pair(𝑥, 𝑎, 𝑝) (Pair-E1)
∃𝑥 Pair(𝑥, 𝑎, 𝑏) (Pair-E2)
∃𝑥 Pair(𝑥, ⟨𝑎, 𝑏⟩, 𝑟) (Pair-E3)
∃𝑥 Pair(𝑥, 𝑝, 𝑏) (Pair-E4)
∃𝑥 Pair(𝑥, ⟨𝑝, 𝑏⟩, 𝑞) (Pair-E5)
⋮

awe often employ functional notation for pairs given their uniqueness.

The vertical dots stand for additional pairing existence axioms that one may want to add to the
theory. The last conjunct of (Pair-Identity-L) provides a contextual definition of the ‘pair level’

𝐿𝑃 (𝑥) ∶↔ ¬𝐿0(𝑥) ∧ 𝐿1(𝑥) ∧ ¬𝐿2(𝑥).

11

DRAFT. Please do not cite without permission.

3.5 𝜂-Merging

The operation of 𝜂-merging operates on the theory in which different instantiation predicates are
present – corresponding to the different arities and order of the initial data or iterations thereof
–, and employs the pairing resources just given to merge the different instantiation relations
into one. The formalization of 𝜂-merging amounts to a translation which replaces the multiple
𝜂s with a single one.

Example. In the example, the translation applies to the language of 3 and replaces each of
𝜂01, 𝜂001, 𝜂102 with a single 𝜂:

The Translation 𝜏4

𝜏4 leaves complex formulae unchanged, and operates at the level of atomic formulae (leav-
ing identity unchanged) as follows:

𝜏(𝜂01(𝑥𝑖, 𝑥𝑗)) ∶↔ 𝜂(𝑥𝑖, 𝑥𝑗)

𝜏(𝜂001(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘)) ∶↔ ∃𝑤(Pair(𝑤, 𝑥𝑖, 𝑥𝑗) ∧ 𝜂(𝑤, 𝑥𝑘))
𝜏(𝜂102(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘)) ∶↔ ∃𝑤(Pair(𝑤, 𝑥𝑖, 𝑥𝑗) ∧ 𝜂(𝑤, 𝑥𝑘))

We can then formulate a theory 4 which, essentially, is the result of reformulating the axioms
of 3 in terms of the new single 𝜂.

4

The language of4 is obtained from the language of3 by replacing the three instantiation
relations 𝜂01, 𝜂001, and 𝜂102 with a single instantiation relation 𝜂. Its axioms are the axioms
of 3, except that 𝑃1, 𝑅1, and Q1 from 1 – which have been carried over to 3. Given the
existence of the relevant pairs involved in 𝑅1, and Q1, we can formulate the new axioms
as:

𝜂(𝑎, 𝑝) (1)
𝜂(⟨𝑎, 𝑏⟩, 𝑟) (2)
𝜂(⟨𝑝, 𝑏⟩, 𝑞). (3)

Again, one can show that the translation 𝜏4 preserves provability.

Proposition

3
⊢ 𝜙(𝑥) ⇒ 4

⊢ 𝜙
𝜏4
(𝑥).

12

DRAFT. Please do not cite without permission.

3.6 Monadicisation

The information contained in the theory obtained so far via successive applications of the rele-
vant operations – 4 in the example – can be roughly divided into two camps: formal content
information concerns identity, levels, pairs; contentual information concerns instantiation. The
final operation of monadicisation operates on contentful information and replaces the binary
𝜂 with a unary one. Again, the formalization of the process can be carried out in terms of a
provability-preserving translation.

Example. We first introduce a simple translation replacing the binary 𝜂 in the language of 4

with a unary 𝜂⊤.

𝜏
5

𝜏
5 leaves all vocabulary of the language of 4 unchanged, except for the clause

𝜏
5
(𝜂(𝑥, 𝑦)) ∶↔ ∃𝑤(Pair(𝑤, 𝑥, 𝑦) ∧ 𝜂⊤(𝑤)).

To ensure that 𝜏5 indeed preserves provability, we need to stipulate the existence of the required
pairs as well as the truth of the required instantiation claims.

5

The axioms of 5 are the axioms of 4 including structural content only, with the addition
of (if not already present in 4):

∃𝑤(Pair(𝑤, ⟨𝑎, 𝑏⟩, 𝑟) (4)
∃𝑤(Pair(𝑤, ⟨𝑝, 𝑏⟩, 𝑞). (5)

Moreover, the axioms (1)-(3) of 4 are replaced witha

𝜂
⊤
(⟨𝑎, 𝑝⟩) (6)

𝜂
⊤
(⟨⟨𝑎, 𝑏⟩, 𝑟⟩) (7)

𝜂
⊤
(⟨⟨𝑝, 𝑏⟩, 𝑞⟩) (8)

aAgain the existence and uniqueness of the relevant pairs licenses a more suggestive notation.

Finally, 5 is able to interpret 4:

Proposition

4
⊢ 𝜙(𝑥) ⇒ 5

⊢ 𝜙
𝜏5
(𝑥).

13

DRAFT. Please do not cite without permission.

3.7 Iteration

The natural sequence provided in this section is of course iterable. With reference to the diagram
on page 7, the “Initial Data” can even correspond to a theory such as 5. The operations applied
to such theories will only introduce new instantiation relations, which can then be monadicised.
Arguably, the point in which only iteration relations are introduced via predicate push-down can
be seen as a natural stopping point for the procedure.
Specifically, this means that the function 𝛿 on terms introduced on page 9 needs to apply to

instantiation relations as well. As a general rule, we set, for 𝜎 a sequence of numbers,

𝛿(𝜂𝜎) = 𝑒𝜎 ,

where 𝑒𝜎 is an individual constant of the target language.

14

DRAFT. Please do not cite without permission.

4 The General Formulation

We assume a sequence encoding method (e.g. the familiar one based on prime decomposition) to
express types and indices by natural numbers. For the sake of definiteness, we take the sequence
(𝑛1, … , 𝑛𝑘) is encoded as

𝑝
𝑛1+1

0
× … × 𝑝

𝑛𝑘+1

𝑘
,

where 𝑝𝑖 is the 𝑖𝑡ℎ prime. This function is easily seen to be primitive recursive, and so are the
projection function.

Definition 1 (Language). We start with the language of relational 𝑛th-order logic 𝑛. Types are
defined as follows:

• 0 is the type of individuals;
• If 𝑖1, … , 𝑖𝑙 are types, then (𝑖1, … , 𝑖𝑙) is the type of an 𝑙-ary relation over entities of types
𝑖1, … , 𝑖𝑙 , respectively.

The language features a denumerable stock of variables of each type. We assume a finite rela-
tional signature with the addition of finitely many non-logical constants 𝐶𝑖1

𝑗1
, … , 𝐶

𝑖𝑙

𝑗𝑙
of respective

types 𝑖1, … , 𝑖𝑙 . Well-formed expressions are defined in the usual way.

Definition 2 (Initial Theory I). The Logical axioms of I are the axioms of 𝑛th-order logic with-
out comprehension. Besides the usual logical constants, we assume only one primitive identity
relation = of type (0, 0). We assume a finite set of non-logical, non-structural axioms including
a finite set of atomic facts of form:

𝐶
(𝑖1,…,𝑖𝑘)

𝑗𝑘+1
(𝐶

𝑖1

𝑗1
, … , 𝐶

𝑖𝑘

𝑗𝑘
) with 𝑘 < 𝑙. (9)

Definition 3 (The first-order language 1

𝜂
). We take language 1

𝜂
is a first-order language fea-

turing finitely many non-structural constant symbols and predicate symbols, including:

• the images of the 𝑛 constants under the mapping 𝛿 defined below,
• a finite stock of ‘domain’ predicates 𝐿0, … , 𝐿𝑛−1,
• a denumerable list of instantiation relations 𝜂

(𝑖1,…,𝑖𝑚)
.

Definition 4 (Pushdown Operation with Levels). The translation 𝜏2∶ 𝑛
→ 1

𝜂
presupposes a

function 𝛿 dealing with terms (including variables of all order):

𝛿(𝑋
𝑖

𝑗
) ∶= 𝑥

(𝑖,𝑗)
, 𝛿(𝐶

𝑖

𝑗
) ∶= 𝑐

(𝑖,𝑗)
.

Then we set:

𝜏2(𝑠 = 𝑡) ∶↔ 𝛿(𝑠) = 𝛿(𝑡);

𝜏(𝑋
(𝑖1,…,𝑖𝑘)

𝑗
(𝑆

𝑖1

𝑙1
, … , 𝑆

𝑖𝑘

𝑙𝑘
)) ∶↔ 𝜂

(𝑖1…𝑖𝑘 ,(𝑖1,…,𝑖𝑘))
(𝛿(𝑆

𝑖1

𝑙1
), … , 𝛿(𝑆

𝑖𝑘

𝑙𝑘
), 𝛿(𝑋

(𝑖1…𝑖𝑘)

𝑗
)) 𝑆

𝑖1

𝑙1
…𝑆

𝑖𝑘

𝑙𝑘
arbitrary terms,

15

DRAFT. Please do not cite without permission.

𝜏2(¬𝜙) ∶↔ ¬(𝜏2(𝜙))

𝜏2(𝜙 ∧ 𝜓) ∶↔ 𝜏2(𝜙) ∧ 𝜏(𝜓)

𝜏2(∀𝑋
𝑖

𝑗
𝜙) ∶↔ ∀𝑥

(𝑖,𝑗)
(𝐿𝑖(𝑥(𝑖,𝑗)) → 𝜏2(𝜙))

The target first-order theory, called I2, features the following axioms

1. The translation of of all finitely many nonlogical axioms, including the translation of the
atomic facts of form (9):

𝜂
(𝑖1,…,𝑖𝑘 ,(𝑖1,…,𝑖𝑘))

(𝑐
(𝑖1,𝑗1)

, … , 𝑐
(𝑖𝑘 ,𝑗𝑘)

, 𝑐
((𝑖1,…,𝑖𝑘),𝑗𝑘+1)

); (10)

2. Each non-logical, non-structural constant belong to the appropriate level: 𝐿𝑖(𝛿(𝐶𝑖𝑗)).
3. The levels are exhaustive and mutually exclusive.

Proposition 1 (Interpretability).

I ⊢ 𝜙(𝑋
𝑖1

𝑗1
, … , 𝑋

𝑖𝑘

𝑗𝑘
) ⇒ I2 ⊢ 𝐿𝑖1

(𝛿(𝑋
𝑖1

𝑗1
)) ∧ … ∧ 𝐿𝑖𝑘

(𝛿(𝑋
𝑖𝑘

𝑗𝑘
)) → 𝜏2(𝜙)(𝛿(𝑋

𝑖1

𝑗1
), … , 𝛿(𝑋

𝑖𝑘

𝑗𝑘
)).

In the next step, we are extending the theory I2 with pairing. We extend the language of I2

with a new primitive ternary relation Pair. The binary predicates Left and Right are defined
as in Section 2.4.

Definition 5 (I3). The axioms of the theory I3 are

Pair(𝑥, 𝑦1, 𝑧1) ∧ Pair(𝑥, 𝑦2, 𝑧2) → (𝑦1 = 𝑦2 ∧ 𝑧 + 1 = 𝑧2) ∧ (¬𝐿0(𝑥) ∧ … ∧ ¬𝐿𝑛(𝑥)) (Pair-Id-𝐿𝑛)

as well as axioms for the existence of pairs of entities corresponding to the finitely many atomic
facts (9).

In I3, we can define tuples inductively:

Pair0(𝑧, 𝑥1, 𝑥2) ∶↔ Pair(𝑧, 𝑥1, 𝑥2),
Pair𝑛+1(𝑧, 𝑥1, … , 𝑥𝑛+3) ∶↔ Pair𝑛(𝑧, ⟨𝑥1, … , 𝑥𝑛+2⟩, 𝑥𝑛+3).

Definition 6 (𝜂-merging translation). The translation 𝜏4 for 𝜂-merging operates on instantiation
relations of the language of I3 only, and leaves everything else unchanged including all structural
predicates (levels, pairing). Its defining clause is:

𝜏4(𝜂(𝑖1,…,𝑖𝑘+2,(𝑖1,…,𝑖𝑘+2))
(𝑐
(𝑖1,𝑗1)

, … , 𝑐
(𝑖𝑘+2,𝑗𝑘+2)

, 𝑐
((𝑖1,…,𝑖𝑘+2),𝑗𝑘+3)

))

∶↔ ∃𝑤Pair𝑘(𝑤, 𝑐
(𝑖1,𝑗1)

, … , 𝑐
(𝑖𝑘+2,𝑗𝑘+2)

) ∧ 𝜂(𝑤, 𝑐
((𝑖1,…,𝑖𝑘+2),𝑗𝑘+3)

).

Definition 7 (I4). The theory I4 is formulated in a language that is just like the language of I3

except that it replaces all instantiation predicates 𝜂𝑖
𝑗
from I3 with a single, binary instantiation

relation 𝜂. Its axioms are:

16

DRAFT. Please do not cite without permission.

1. First-order logical axioms (with identity) for the new signature;

2. All structural axioms of I3, i.e. axioms concerning levels and pairing;

3. The result of applying the 𝜂-merging translation to the finitely many non-logical axioms
of I2:

𝜂(⟨𝑐
(𝑖1,𝑗1)

, … , 𝑐
(𝑖𝑘 ,𝑗𝑘)

⟩, 𝑐
((𝑖1,…,𝑖𝑘),𝑗𝑘+1)

). (11)

Proposition 2.
I3 ⊢ 𝜙(𝑥1… , 𝑥𝑛) ⇒ I4 ⊢ 𝜙

𝜏

4
(𝑥1, … , 𝑥𝑛).

The final operation we consider is a general version of Monadicisation introduced above. We
apply it to the theory I4, but it can of course be applied to any theory including pairing. The
language of I4 is modified only in that the binary instantiation predicate 𝜂 is replaced by the
unary 𝜂⊤. The theory then needs to be modified accordingly with the existence of the required
pairs for Monadicisation (if not already present).

Definition 8 (I5). The theory features all axioms of I4, except that the axioms (11) are replaced
by

𝜂
⊤
(⟨⟨𝑐(𝑖1,𝑗1)

, … , 𝑐
(𝑖𝑘 ,𝑗𝑘)

⟩, 𝑐
((𝑖1,…,𝑖𝑘),𝑗𝑘+1)⟩

). (12)

To translate I4 into I5, we simply translate 𝜂 into 𝜂⊤ and leave all else unchanged.

Definition 9 (Monadicising translation). The translation 𝜏
5 from the language of I4 into the

language of I5 behaves like the identity translation on all logical connectives and quantifiers, on
structural vocabulary; its defining clause is

𝜏
5

(𝜂(⟨𝑐(𝑖1,𝑗1)
, … , 𝑐

(𝑖𝑘 ,𝑗𝑘)
⟩, 𝑐

((𝑖1,…,𝑖𝑘),𝑗𝑘+1)
)) ∶↔ ∃𝑤 Pair(𝑤, ⟨𝑐

(𝑖1,𝑗1)
, … , 𝑐

(𝑖𝑘 ,𝑗𝑘)
⟩, 𝑐

((𝑖1,…,𝑖𝑘),𝑗𝑘+1)
)∧𝜂

⊤
(𝑤). (13)

The translation 𝜏5 also preserves provability.

Proposition 3.
I4 ⊢ 𝜙(𝑥1, … , 𝑥𝑛) ⇒ I5 ⊢ 𝜙

5
(𝑥1, … , 𝑥5).

Finally, the considerations from subsection 3.7 carry over without modifications to the general
setting.

17

	Introduction
	Schemata-as-patterns
	bClearer
	Logical methods and formalization
	Looking ahead

	Operations
	Simple Predicate Pushdown
	Levels
	Monadisation
	Pairing
	Monadicized Predicate Pushdown

	The Unification Algorithm
	Initial Data
	Simple Predicate Pushdown
	Levelling
	Pairing
	-Merging
	Monadicisation
	Iteration

	The General Formulation

